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Chapter 1

General-Purpose I/O

, One of the most common applications of microcontrollers involves General-Purpose Input and

Output (GPIO), where the microcontroller interprets voltage levels into logic values. One con-

stant feature in the microcontroller domain, from the very first MCU to the most recent, is the

support for GPIO. Over the subsequent years, the types, the capabilities, and the numbers of

them may vary considerably, from vendor to vendor, family to family, and even within MCU

family. This chapter will explore General-Purpose Input and Output from both an electrical

and programming perspective.

This chapter assumes the reader has at least basic knowledge of electronics laws such

as Ohm’s Law, Kirchoff’s Voltage and Current Laws; and the basic properties of simple de-

vices includes resistors, capacitors, inductors, diodes, and transistors (both BJT and FET). This

chapter also references a few digital logic devices including: AND, OR, and NOT gates; mul-

tiplexors, and flip-flop latches. If the reader is unfamiliar with these topics, review the basic

ideas in Appendix ??, and them come back to this section.

1



2 1.1. INTRODUCTION TO GPIO

1.1 Introduction to GPIO

Through a clever use of digital logic devices, GPIO maps a bit in a register to a voltage on

a physical pin of the microcontroller. The state of the GPIO line is totally controlled by the

program running on the MCU. The line can be in one of three states: input, driving “high”

voltage, and sinking to ground. It is this primitive, low-level operation that makes GPIO so

flexible and powerful. With that flexibility comes the burden of writing code to make it work

correctly.

Throughout the rest of this text, we will examine a number of different types of more

specialized I/O devices. We will find a diverse range of specialized controllers. We will

see controllers that drive electric motors, display text and graphics on displays, interact with

other chips, and even communicate at high-speed with other computer systems. These special

purpose controllers work with little programmer intervention. But we are constrained in

using these hardware resources to exactly the purpose for which they were designed. We

can only vary their operation by what the hardware engineering allowed when the chip was

made. Here, we trade flexibility with the ease of allowing the hardware to do the work for us.

For those new to microcontrollers, GPIO can present a logical challenge: how do we con-

nect our code to the real world? the short answer is through the memory. When we first

learned to program, we learned to use a programming language with its different statements

and variables. We also learned that those variables are stored somewhere in memory, and the

compiler manage that for us. Ultimately, while the CPU is critical to changing the state of the

computer, the memory is critical to remembering the state of the computer. But how does

memory actually work?

Section ?? introduced the idea of building a single bit memory, an SRAM cell, using six

transistors. With that hardware, we can store one bit, and we can retrieve one bit. We can put

8 of those SRAM cells together to store a byte, and we can put many bytes together to create

a computer memory space, with each byte at a particular address. In that same section, we

learned that the memory controller activates the proper memory cells in response to a load

or store instruction’s address. A load simply detects whether the SRAM cell’s transistors are

turned on (logic high) or turned off (logic low); and a write simply changes the transistor’s

state.

One way of looking at GPIO is that it is a memory device that is also connected to the

physical world. If we were to add and additional wire to the 6T SRAM cell of Figure ??, we

could run that wire out from the CPU’s core to one of the legs of the processor. By reading and
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writing to that memory bit, we could interact with the memory cell’s state and consequently,

that one leg on the MCU. Logically, that is all that GPIO is, a memory cell whose value is

connected to the outside world. Just like any other memory cell, what it represents and how

it changes is controlled by the program running on the MCU.

This is a highly simplified view of the GPIO module. But with that simple understanding,

we can go on to examine the actual details of a GPIO module. We will examine its electrical

characteristics and limitations. We will study how to connect the GPIO legs into a circuit.

Finally, we will look at writing code to configure and use the GPIO module.



4 1.2. ANATOMY OF A GPIO PORT

1.2 Anatomy of a GPIO Port

This section explores the composition of the GPIO port. The section starts with a logical view

of the organization and function of the digital logic elements that make up the I/O port.

1.2.1 Logical Organization

Figure 1.1: PIC32 GPIO Port Diagram[3]

Figure 1.1 shows a typical I/O cell for a GPIO module. This specific I/O cell is from the

PIC32, but other microcontrollers will have a similar set of similar elements. Broadly, the

diagram consists of four major parts:

• I/O cell and external pin connections (right hand side),

• output logic (highlighted in pink),

• input logic (highlighted in blue), and

• data and control lines interfacing to the CPU core (left hand side)

I/O Cell

The physical connection to an external pin of the microcontroller is represented in Figure 1.1

by the square with an X through it and is labeled “I/O pin.” The pin is connected to the input
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and output logic through a pair of buffers. These buffers will be explored in greater detail in

the next two sections.

As we have already seen in Chapter ??, there are never enough pins in a microcontroller,

and their functions are often multiplexed with other peripherals (e.g. Figure ??). So, we must

ensure, through software configuration, that the I/O cell is available for use with GPIO.

Input Protection Because the I/O cell is directly connected to buffers, it is crucial to ensure

that the voltages present on the I/O pin are within the accepted range of the device. De-

vices can sometimes tolerate higher voltages, but can suffer significant damage for even small

negative voltages. For example, a 3.3 V microcontroller typically tolerates voltages between

−0.3. . .5 V. Voltages outside this range can cause permanent damage to the device. Two com-

mon reasons for this are bad circuit design and electrostatic discharge. There are a number of

techniques to protect the I/O cell from damage explored in Section 1.3.2.

1.2.2 Output Logic

Figure 1.2: Output logic of GPIO port. A. Output buffer, B. Data flip-flop, C. Tri-State control,
D. Open-Drain control E. buffer enable logic.

The output logic components are shown in Figure 1.2. Ultimately, the goal of all of these

components is to configure the output buffer (A) into one of three states: enabled and con-

nected to supply voltage; and enabled and connected to ground; and disabled. At its simplest,

a buffer makes its output voltage match its input voltage (See Section ?? for more details).

When the output buffer is enabled (notice the signal entering the top of the buffer (A)).

When the enable signal is high (a logic 1), then the buffer is enabled, and when the signal is

low (logic 0) then it is disabled. When a buffer is disabled its output is effectively disconnected
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from the circuit, a technique known as high impedance operation. When the buffer is enabled

then its input, which is connected to the data flip-flop (B) will determine its output. If the

input is a high voltage (logic 1) then its output will also be a high voltage (logic 1), likewise,

when the input is low voltage (logic 0) then its output will also be low voltage (logic 0).

If we work backwards from the buffer (A) we find an MUX (E). This MUX will select

from one of its two inputs, channel 0 is connected to a flip-flop (C) through an inverter; and

channel 1 is connected through an AND gate to both flip-flops (B and C). Channel 0 is the

normal operation while channel 1 is part of the open-drain control, and will explained shortly.

The flip-flop (C) holds a configuration bit written by the CPU. The output of the flip-flop

(C) goes through an inverter, into the MUX (E) and then into the buffer. If the flip-flop (C)

holds a logical 0, then the inverter will flip it to a logical 1 which will be fed into the MUX

(E), into the buffer (A), and it will be enabled. Likewise, if the flip-flop (C) holds a logical 1,

it will be inverted to a 0 and the buffer (A) will be disabled. Because this flip-flop is used to

configure which of the three states the buffer can be in, it is also known as the tri-state register.

Open Drain Control Finally, we can look at the last flip-flop (D), which is also known as

the open drain control register. During open drain operation, the I/O port will only alternate

between sinking to ground and high impedance mode, it will not ever connect the output

buffer to the supply voltage. The subject of open drain I/O will be further explored in Sec-

tion 1.4.6. To see how this is implemented, look at the AND gate and see that one of its inputs

comes from the negated tri-state register (C) while the second input is from the data flip-flop

(B). The small bubble at the input of the AND gate indicates that this line is also negated. The

following truth table shows the output of the AND gate:

Tri-State Data AND Buffer

0 0 1 Pull to Ground

0 1 0 Disabled

1 0 0 Disabled

1 0 0 Disabled

So, if the open drain control register (D) is enabled, then the MUX (E) will use the output

of the AND gate to control the buffer (A). And, from the truth table, we can see that when

the tri-state control register (C) is configured for output and the data is 0 then the buffer is

enabled and the since data is 0, the buffer’s (A) will be to pull to ground, in all other cases,

changing either data or the tri-state register will disable the buffer.
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1.2.3 Input Logic

Figure 1.3: Input logic of GPIO port. A. Input buffer, B. Synchronization flip-flops, and C.
Sleep mux

The input path starts with the input buffer (A). Notice that the input to buffer (A) shares a

connection to the I/O pin and the output of the buffer from the output logic. The input to the

buffer is known as a high impedance path and will draw a negligible amount of current from

the circuit it is connected to. The output of buffer (A) is routed either to the sleep MUX (C) or

to the synchronization flip-flops (B).

Metastability The the pair of synchronization flip-flops are used to provide synchronization

of input signals to clock edges and to prevent metastability, a condition that allows the output

of a flip-flop to change unexpectedly due to a glitch in its input clock or data lines. Metasta-

bility is a common problem with flip-flops. Figure 1.4 shows the impact of glitchy input to a

flip-flop. The input to the flip-flop must be constant during its setup-and-hold time. If there is

a glitch in the input to the flip-flop during this time, then it is uncertain what output value the

flip-flop will take, and during this time, its output value will also be uncertain. The second

flip-flop will also latch up its input on the same rising edge of the clock, but it will latch up the

previous, stable output of the flip-flop. Using a pair of flip-flops manages the meta-stability

Figure 1.4: Flip-Flop Pair with Input Glitch
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problem.

1.2.4 Data and Control Lines

Figure 1.5: GPIO Port Control lines

Figure 1.5 shows the control lines between the CPU and the I/O port. When the CPU

performs a load word or store word to one of the memory-mapped addresses, the control unit

will enable one the control lines to select the correct data. For example, if the CPU performs

a load word to read from the tristate register, then the RD TRISx, signal would be asserted.

If we follow this signal we see that it enables another buffer. When this buffer is enabled it

will make its output match the current value stored in the tri-state flip-flop. This is our first

glimpse into how memory mapped I/O is actually implemented. From here, it is just a simple

matter of mapping the proper memory address to activating the correct control lines.

1.2.5 Tri-State Terminology

As mentioned earlier in this section, microcontrollers (and many other digital logic devices)

can be in one of three states, but humans prefer to think of electric things as being on or

off. Unfortunately, when it comes to describing the pins of a microcontroller, on and off are

insufficient and can lead to confusion. For example, is the I/O cell really “off” if it is actively

pulling the I/O pin down to ground?
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Remembering a few basic facts can clear up most of the terminological confusion. First,

the input buffer is never disabled. Even though the port may be configured in output mode,

the input buffer can still be read. Second, the output buffer can either be enabled or disabled

depending on the tri-state configuration. To keep some clarity, it is best to use enabled or

disabled to describe the output buffer.

The terms “on” and “off” can make sense when describing the behavior of a device that is

connected to the microcontroller. For example, consider an indicator lamp that will emit light

when current passes through it. If one leg of the lamp is connected to the microcontroller and

the other is connected to ground, then the lamp will be on when the output driver connects

that port to the voltage supply. Current will flow through the microcontroller, through the

lamp, and enter ground to complete the loop. The lamp is “on” when the output is enabled

and configured for logic high. The lamp is “off” when the output is enabled and set for logic

low or the output buffer is disabled.

On the other hand, the exact same lamp could have one of its legs connected directly to

the voltage supply and the other leg connected to the microcontroller. Now, to get current

to flow through the lamp, the microcontroller must use its output driver to connect that leg

to ground, so the output driver must be enabled but configured for logic low. To turn the

lamp off, we can either disable the output driver or write a logic high to connect both legs

of lamp to the same voltage supply and no current flows. Without knowing how the lamp is

wired to the microcontroller there is no way to tell how to turn it on or off. In fact, using other

logic devices, such as inverters, it is possible that the lamp will be on if the output buffer is

disabled!

The terminology of “on” and “off” is a little dangerous, and depends entirely on the con-

text in which these terms are used. Always keep that in mind when thinking about how the

microcontroller will be used to drive other devices.
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1.3 GPIO Electrical Characteristics

The GPIO ports of a microcontroller are said to be digital devices. In the previous section we

described how the buffers used “high voltage” and ”low voltage” to represent a logical 1 or

0, and we saw how these logical values can be mapped into values that can be read or written

through software. But what do we really mean by “high” and “low” voltage? The answer

depends on the fact that these complex devices, like buffers, muxes, and flip-flops are all

built from transistors and it is the behavior of these transistors that determines the electrical

behavior of a microcontroller (see Section ?? for a review of transistor fundamentals).

1.3.1 Mapping Voltages to Digital Logic

A digital logic system maps logical 1 or 0 to whether a transistor is conducting current or not.

To keep the discussion focused on digital logic, let us focus only on one type of transistor, the

“N-type MOSFET,” a three terminal device consisting of a gate, drain, and source. When the

voltage, as measured between the gate and the source, is greater than some threshold voltage,

the MOSFET will be saturated and current will flow freely from drain to the source. When the

voltage is less than some lower threshold, the MOSFET will be completely off and no current

will flow. When the voltage is between these two thresholds then the MOSFET will act like a

voltage controlled resistor, current will flow from drain to source, but it will be proportional to

the gate voltage. Almost no current will flow through the gate. In fact, this is how the high-

impedance inputs to buffers are constructed!

Table 1.1: Thresholds for sample microcontrollers

Part VDD Nominal VIH VIL

Cypress CY7C6 1.7 . . . 3.6 > 2 < 0.8
PIC 16F684 2.0 . . . 5.5 0.8 ∗ VDD . . . 5.5 0 . . . 0.15 ∗ VDD
PIC32 MX 3.3 0.8 . . . 5.5 0 . . . 0.2
Tiva C TM4C123 3.3 2.15 . . . 5.5 0 . . . 1.15

The high voltage threshold is called VIH (for input high voltage) and the low voltage

threshold is VIL. The actual values of these thresholds can vary and are reported in the

datasheet for particular part. A sample section of a datasheet is shown in Figure 1.6. Table 1.1

shows different threshold ranges from different vendors. There can be significant difference

in the thresholds between microcontrollers. For example, 1.0 V would be interpreted as a log-

ical 1 in the PIC32, a logical 0 for the Tiva C, and would be in the no man’s land in the Cypress

chip.
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Figure 1.6: Example electrical characteristics from the PIC32 datasheet [4].

Schmitt Trigger There is typically a dead band between the high and low voltage thresholds.

For the PIC32 in Table ??, the range 0.2 . . . 0.8 V is in the “no man’s land” between high and

low. A Schmitt Trigger is a special type of buffer that uses hysteresis to hold its last state until

the voltage crosses into one of the defined ranges. If the Schmitt trigger was in its low state,

it will output a logic 0 until its input voltage crosses VIH , and it will remain a logic 1 until the

input voltage crosses the VIL threshold.

Figure 1.7: Input voltage to Logic Mapping of Schmitt Trigger

For example, if voltage was steadily rising from 0 to 3 volts, the logic level would start low

and remain low until the voltage exceeded 0.8 V [2], and then it would switch to logic high

through the rest of the voltage values. If the voltage were then to go from high to low, then we
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Listing 1.1: Schmitt Trigger Logical Behavior
1 if (output == LO) {

if (input > 0.8) output = HI;
3 else output = LO;
}

5 else { // input = HI
if (input < 0.2) output = LO;

7 else output = HI;
}

would start off reading logic high and would continue until the voltage fell below the 0.2 V

value, and then we wold read logic low. This action is shown in Figure 1.7, which shows how

a sinusoidal input voltage would be mapped into digital values.

The following code models the behavior of the Schmitt trigger, the actual construction of

a Schmitt trigger has nothing to do with C language. Note the use of a state variable that

models the hysteresis of the actual device. When the input crosses the logic level then the

state changes and the output will reflect this change accordingly.

Burden Voltage One important design goal of the input buffer is that it should not have a

significant impact on the circuit it is connected to. It should enable sampling the voltage levels

on the circuit without measurably changing the voltage or the current on the rest of the circuit.

This change is also known as the burden voltage. Typically, the input buffer of a MCU is listed

as greater than 500 kΩ and may effectively be in the mega-Ohms.

The burden voltage can be calculated using information from the device’s datasheet and

Ohm’s Law. In an ideal MOSFET, no current flows through the gate. However, in a real

MOSFET, there is some leakage current, typically just a few micro-amps. Given the leakage

current and supply voltage, Ohm’s Law will relate the equivalent resistance:

R = V/I (1.1)

R = 3.3 V/1 µA (1.2)

R = 3.3 MΩ (1.3)

.

For most circuits, this additional resistance will not cause any problems. However, there

are some deranged examples that this can turn into a trap. Figure 1.8 shows three different

circuits. In each case, there is a series resistor (R1). When the series resistor is small com-

pared to the input port’s equivalent resistance then there is little impact to the circuit, which

is demonstrated in case (A). However, as the series resistance increases, then the burden volt-
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Figure 1.8: Three examples of burden voltage. (A) little impact, (B) noticeable impact, and (C)
failure to read signal.

age of the microcontroller can start to have an impact on the circuit, which is demonstrated in

(B). Some microcontrollers may read this signal as a logic high, others may not. The situation

in (C) is far worse. Here, there are two high impedance inputs, which are equivalent to par-

allel resistors with the corresponding voltage drop. Again, the performance depends on the

first series resistor. If it were smaller then the voltages may be within acceptable ranges for

the circuit.

1.3.2 Voltage and Current Limits

In addition to the voltage thresholds described above, microcontrollers typically have strict

electrical ratings regarding voltage and current that can pass through their I/O pins. Ev-

ery microcontroller will have its own characteristics and they will be listed in the device’s

datasheet. This section will explore some of these important characteristics and what they

mean for the way microcontrollers can be used. Table 1.2 shows some key characteristics

from a PIC32 microcontroller as an example.

Table 1.2: PIC32MX GPIO Electrical Characteristics

Characteristics Value
Maximum current out of VSS 200 mA
Maximum current in on VDD 200 mA
Maximum current on an I/O pin 25 mA

Voltage on any digital only pin with respect to VSS −0.3 . . . 5.5 V
Voltage sourced, logic high 2.4 . . . 3.3 V
Voltage sourced, logic low 0 . . . 0.4 V
Current sink, input port ±1 µA
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Maximum Current and Power Microcontrollers are not designed to handle large current

loads. Table 1.2 shows that this particular device can handle at most 200 mA through its

supply and ground pins. This is the total for how much current it can provide and how much

current it can sink. For example, when an output buffer is connecting the I/O pin to ground,

the microcontroller will sink a certain amount of current. There is also a maximum amount of

current that can pass through any single I/O pin. In this example, each pin can handle 25 mA

(sourcing voltage or sinking ground). This does not mean that the microcontroller can have

eight pins passing 25 mA, as the CPU core and other peripherals also draw current which

must pass through either the supply or ground path of the microcontroller.

As a consequence of Table 1.2, to avoid damaging the part, the following rules must always

be followed:

• Voltage is never negative (reverse-bias)

• Voltage is never higher than the port can tolerate

• Current on any port is limited to 25 mA, even during in-rush

• Total current through all ports (plus the chip) is less than 200 mA

The rest of the section explores methods for protecting the GPIO ports on a microcontroller

from damage. Primarily, we are concerned with methods to ensure the proper voltage, and

methods to ensure the maximum current requirements are met.

Input Protection

Microcontrollers are connected to a wide variety of electrical components, therefore it is im-

portant to protect their I/O cells from damaging voltage and current spikes. Transient Voltage

Suppression (TVS) devices can protect a circuit from voltage spikes such as electrostatic dis-

charge, unregulated power supplies, or other short bursts of high voltage by providing an

alternate, low-impedance path to ground. There are several methods of constructing a TVS,

including: fuses, diode clamps, gas discharge tubes, spark gaps, varistors, and optical isola-

tion.

Fuses The simplest and most common protection device is the humble fuse. Typically made

from a sacrificial length of wire, when the voltage or current is greater than the design ca-

pacity of the fuse, the wire overheats and permanently breaks. For low voltage applications,
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fuses provide safe, cheap, and reasonably effective input protection. Fuses with glass tubes

can suffer a catastrophic failure where the glass shatters. For safety critical systems, fuses can

be wrapped with a protective coating that will prevent the formation of glass shards. The

primary disadvantage with fuses is that they can take relatively long and somewhat unpre-

dictable amount of time to blow. By the time a fuse has blown its possible that extremely

sensitive components (like an I/O cell of a microcontroller) have already been damaged.

Figure 1.9: Protection diodes on an I/O port

Protection Diodes Figure 1.9 shows a pair of protection diodes or clamping diodes to protect

the internal circuitry from transient voltage spikes. When the voltage on the I/O pin rises

more than Vcc, diode D1 will begin conducting, and will dump the current into the global

Vcc power supply (which could be dangerous to other devices!). When the voltage on the

I/O pin drops sufficiently below ground, diode D2 will begin conducting and dump the cur-

rent to ground. In either case, the voltage of the I/O pin will not exceed the thresholds set by

the protection diodes. Typically, Zener diodes are selected because they can tolerate repeated

reverse bias operation better than other diodes types. Internal protection diodes should only

be used as a last-ditch effort to protect the I/O pin. A better design is to include external pro-

tection diodes and current-limiting series resistors on the I/O pin. Whether they are internal

or external, the protection diodes are good choices for low voltage transients, but they will

suffer permanent damage and ultimately fail in the presence of larger voltages and currents.

Gas Discharge Tubes Gas Discharge Tubes (GDT) (see Figure 1.10) can protect an I/O cell

from large voltage and current spikes. The tube has two electrodes separated by a normally

non-conductive gas. Typically, one of the electrodes is connected to part of the circuit to

be protected and the other is connected to ground. Normally, no current can flow across

the electrodes and the GDT has no effect on the circuit. However, when the voltage spikes

high enough to form a plasma between the electrodes, it creates a low impedance path to

ground and the voltage surge is dissipated. GDTs can typically handle thousands of volts
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Figure 1.10: Gas discharge tube (Littlefuse)

and hundreds of amps of current, making them ideal lightening suppression. Remember,

these devices are designed to handle transient spikes lasting a few microseconds and only

happening occasionally. With each strike, the GDT has a chance of failing.

Figure 1.11: Spark gaps in a printed circuit board [? ]

Spark Gaps Spark gaps (see Figure 1.11) are similar to gas discharge tubes for handling

transients. The spark gap uses two contacts separated by a tiny gap in a circuit board. Air has

an expected breakdown voltage of 3 kV mm−1 [? ]. When the voltage exceeds the breakdown

voltage, a plasma is formed and there is a low impedance path to ground. Typically, these

gaps are about 0.2 mm apart, giving an expected breakdown voltage of 600 V. The plasma

formation typically blasts away electrons from the gaps causing them to wear out eventually.

Metal Oxide Varistors Metal Oxide Varistors (MOV) are another type of transient suppres-

sion. MOVs, like the clamping diodes, are semiconducting devices. They are constructed

with grains of a semiconducting materials. In the presence of an electric field, the boundaries

between grains begin conducting. As the voltage increases, exponentially more grains begin

conducting and the MOV will shunt away the current. MOVs are extremely fast, dissipat-

ing a transient is as little as 10. . .40 ns. One major drawback to the MOV is that they cannot

handle sustained high voltage and will suffer permanent damage as a result. Another major

drawback is that through repeated and or long spikes the MOV can fail catastrophically. The
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failure modes of a MOV include entering a thermal runaway state where the device can catch

fire or set nearby components on fire. Very often, the MOV is used as one part of a protection

system.

Optical Isolation One final type of input protection is to use a device called an optical iso-

lator. Although they are typically contained in one package, there are really two separate

electrical devices in the package. One side uses an electrical buffer to drive a light source.

The other side has a light detector which drives an electrical buffer. There is no electrical con-

nection between the two sides. The light detector can only output a fixed voltage, there is no

possibility of a voltage spike or short circuit. On the other hand, the input side to the optical

isolator can be damaged by transients, but the damage cannot propagate to the other side.

As a personal anecdote, many years ago I was troubleshooting a communications failure

between a central server in our main office building and a remote cluster of terminals in an-

other building. The two buildings were separated by about 500 m of copper cable that was

run through PVC conduit in the ground. The system was installed in October, and it worked

fine until early May, and then the communications controllers started failing throughout the

late spring and early summer months. Eventually, we noted that whenever there was a thun-

derstorm anywhere nearby the voltage would travel through the water table which had filled

the PVC pipe. A lightening strike, even a few miles away, could knock out our communica-

tions gear. One time, a strike actually created a spark inside the server and damaged a disk

controller. We installed specially made optical isolators which had beefy input protection, and

after that, we never had a problem again.

Designing proper input protection is complex and requires a significant design effort, es-

pecially for products that must meet safety standards. It is really vital to think about what

impact the protection device will have on the circuit, what types of voltage transients we

need to protect against, and importantly, what happens if the transient protection fails? For

example, many of the items listed here can fail and simply stop protecting the circuit, which

can create major problems to the rest of the system. For many of these reasons, designing and

validating proper input protection is an important engineering speciality of its own.

Output Protection

In most cases, safely using a microcontroller as an output device means ensuring that the

maximum current is not exceeded. The output voltage is typically driven by the microcon-
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troller and will be controlled by the output buffer. However, while the input buffer has a high

impedance input, the output buffer is a low impedance output. This means that there is little

internal resistance provided by the buffer. If there is not enough resistance the output buffer

will simply draw too much current and become damaged.

The electrical characteristics of the microcontroller stipulate the maximum current that

will be tolerated per pin and per part. To protect each pin we must simply ensure that we

obey Ohm’s law. For example, if the pin cannot handle more than 20 mA at 3.3 V, then use

Ohm’s Law to find the minimum resistance that can be driven on a pin:

I ≤ V R (1.4)

R ≥ V/I (1.5)

≥ 3.3 V/20 mA (1.6)

≥ 165 Ω (1.7)

So, we need to ensure at least 165 Ω resistance on each leg of the MCU. Of course, as the

voltage changes, so does the minimum resistance.

The Output is Willing, but the Input is Weak The output of a buffer has low impedance,

meaning it has little to limit its current. On the other hand, the input to a buffer has extremely

high impedance. It is perfectly fine to directly connect the output of one buffer to the input

of another. For example, two microcontrollers can be connected directly via a wire or circuit

board trace. The high impedance input will limit the current from the low impedance output.

This can work, until it doesn’t. Very high speed devices may need to have carefully designed

interconnections, with resistors to absorb reflections, filters to mitigate noise, and other tech-

niques. Generally, signals that change with a frequency less than 100 MHz can maintain signal

integrity without these techniques. Designing high speed interconnects and signal integrity is

an advanced specialized area of electrical engineering that beyond the scope of this text.

Series Resistance If the circuit only has low impedance devices then there must be an ad-

ditional series resistor added to limit the current. Devices like bulbs, LEDs, switches, and

buttons are all low impedance. A resistor must selected to ensure that the current through

every device is below its maximum allowable level. For example, a 3.3 V microcontroller may

be able to handle 20 mA, but if it is driving an LED that can only handle 5 mA, then instead of
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the 165 Ω resistor from Eqn 1.4, we would need a R >= 3.3 V/5 mA ≥ 660 Ω resistor.

Managing the current on a single branch of a circuit is generally straightforward. Unfortu-

nately, there is no easy way to ensure that the MCU will not exceed its total current limit. The

only way to really ensure this would be to add a fast-blow fuse to the circuit with the hope

that it will blow before the MCU is damaged. Even this strategy is fraught will trouble since

a transient current load might be acceptable (e.g. during startup) and will unnecessarily blow

the fuse. The best engineers will study the behavior of their system and through careful sim-

ulation, analysis, testing, and verification will make sure that the device will never be taxed

beyond its total current limit.

1.3.3 Microcontroller as Source

When the output buffer is active, the microcontroller either connects a pin to the microcon-

troller’s power supply or to ground. We can use this operation to turn devices on or to turn

them off, like a programmable light switch. One key difference between the MCU and the

light-switch analogy is that when the MCU is in its “zero state” - it is still actively pulling the

pin to ground whereas the switch actually breaks the circuit (very high-impedance!).

Consider the circuit shown in Figure 1.12. The circuit shows a GPIO port RA0 of a mi-

crocontroller connected to the anode of a diode Port RA0 means we are working with bit 0 of

bank A of the MCU’s GPIO module. The cathode of the diode is connected to a resistor, and

the resistor is connected to ground. When the microcontroller port is on, then current flows

through the microcontroller, out through the enabled pin, then through the diode, the resis-

tor, and into ground. When the microcontroller port is turned off (still in output mode) then

the port is connected to ground, and any current flowing from the anode of the diode would

flow into the GPIO pin and finally through the microcontroller to ground. Since there isn’t an

external supply of current, there would be (virtually) no current flowing out from the anode

of the diode.

Figure 1.12: LED Circuit

To turn the LED on, we must configure the microcontroller to be in output mode to turn
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on the output buffer. The voltage and current must be sufficient to make the LED work, but

not greater than the electrical ratings of the microcontroller, the diode, or the resistor. Based

on the previous section, for our Microchip PIC32 part, that means we must clear bit 0 of the

TRISA register and set bit 0 of the PORTA or LATA registers. Section ?? describes how to clear

or set individual bits (Bit Masking) using C language.

TRISA = TRISA & ˜1; // use AND mask to clear a port
2 PORTA = PORTA | 1; // use OR mask to turn on a port

1.3.4 Microcontroller as Sink

Table 1.3: PIC32MX Current Sink Options

GPIO Open-Drain

Initialization
ODCA = 0; ODCA = 1;
PORTA = 0; TRISA = 0;
TRISA = 1; PORTA = 0;

Sink is Open
TRISA = 0;

PORTA = 1;
PORTA = 0;

Sink is Closed TRISA = 1; PORTA = 0;

Figure 1.13: GPIO as Sink

The GPIO ports on a microcontroller can also be used as a sink to ground. In this mode

of operation, the microcontroller operates as a logic switch, opening and closing to complete

the path to ground of an externally powered switch. As mentioned before, the I/O port can

handle higher voltage devices as a sink than as a source. Figure 1.13 shows a circuit where

the ground connection is through the sink created by the microcontroller. Only when the

microcontroller is sinking to ground will current pass through the resistive load.

In our PIC32 example, this makes use of the output buffer (see Figure 1.1) to create a path
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to the microcontroller’s ground. The sink cannot not use the input buffer, whose input port is

always high-impedance. Instead, the MCU uses the output port to connect the GPIO port to

ground. The microcontroller can create a sink using either GPIO or an Open-Drain configura-

tion.

Let us call the state of current passing through the resistive load of Figure 1.13 the “on”

state, and current being blocked the “off” state. Using this terminology, when the load should

be on, we should be sinking current, and when the load is off, we should be disconnected

from the circuit. The mapping of on and off states in this problem is because we are using the

GPIO as a sink. Our on and off state mapping in the previous diode example (Figure 1.12)

would map “on” to sourcing current and “off” to be sinking current. The mapping has less to

do with the GPIO port than the external circuit.

As Table 1.3 shows, in GPIO mode, toggling between the “on” and “off” state in this

example is accomplished by keeping the PORTx register set to 0, and toggling the TRISx

register. This is very different than when using the port as a source where the state of the

PORTx register determined on and off. Now consider the Open-Drain mode where toggling

on and off means toggling the PORTx register (just like sourcing current).

In fact, there is no difference in functionality between using the open-drain mode and and

setting up the registers as they were described here. The advantage to the ODC mode is that

instead of toggling both PORTAx (or LATx) and TRISx, the ODC controller will do it for us.

1.3.5 Microcontroller as Input

The GPIO port of the microcontroller can also be used for input. In this mode, the output

port is disabled and input buffer is connected to the port. This was described more full in

Section ??, but based on the voltage present on the pin the input buffer will map that voltage

to either logic high or logic low. When the CPU executes a load instruction, those logical

mappings are returned on the data-bus.

The tri-state control register is used to set the status of the output buffer. In the PIC32, the

output buffers are controlled by the tri-state register. Setting the corresponding TRISx bit to a

1 enables input (think 1 = i) and simultaneously disables the output buffer.

After the microcontroller is setup for input mode, the values can be read through a load-

word instruction on the special function register corresponding to the I/O port. For example, in

the PIC32 instruction set, reading from one of the PORTx registers yields a 16-bit value, where

bit n corresponds to port Rxn. The value can be copied into a General-Purpose register or



22 1.3. GPIO ELECTRICAL CHARACTERISTICS

Listing 1.2: Simple Input Example
void maybe_do_something_cool( )

2 {
// enable output on RA4

4 TRISA = 0b1;

6 if (PORTA & 0x01) {
do_something_cool( );

8 }
}

variable, and treated like any other value.

Listing 1.2 shows a very simple example of using GPIO input. The TRISA special-function

register has bit 0 set to 1, indicating it is now in input mode. The if statement reads the

value of the PORTA register. Because the register returns all of the bits in that port, the code

uses an AND-mask to turn off all other bits except bit 0. If that bit is true, the if statement

is taken, and we call the do something cool() function.

1.3.6 Driving Other Chips

One common use for microcontrollers is to use their GPIO lines to drive other chips. As a

hold-over from the discrete logic days, devices often operate with transistor-to-transistor level

(TTL) logic. A TTL input is expected to be high-impedance. A TTL output device is expected

to be greater than a logic-high threshold or below a logic-low threshold. Older TTL levels

used 1.7 V for a minimum logic-high threshold, and 0.7 as a maximum logic-low threshold.

For example, consider a larger system with a power-regulator, powerful CPU, and an

MCU. The power-regulator has an enable line that will turn the power on to the rest of the

system. The CPU has a reset line that will cause it to reboot. A reset/power switch can be

connected to a microcontroller. If the power button is pressed the microcontroller will raise

the reset line to reset the CPU and hold it 100 milliseconds and then release it (even if the

button is still pressed). This will cause the CPU to reset. If the button is pressed and held for

more than 3 seconds, the microcontroller will then turn on (or off) the machine by changing

the enable status to the power manager.

This is a common use for the microcontroller: interface to some low-level I/O device and

then drive logic to control other parts of a larger system. In fact, we could construct the

same behavior using a collection of older Jelly-Bean Logic chips, but it would be a complex

circuit design. Jelly-Bean Logic is relatively easy for Combinational Logic, where the output is

determined by the input alone. But this circuit has a timing requirement - the same button is

being used to either reset the processor or turn on/off the circuit. The MCU is ideally suited

for this purpose, the code running on the MCU can determine which mode the user wants
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and perform this purpose.

One concept that should not be missed here is that the MCU’s input buffers can be con-

nected to any voltage source, like a switch, or it could be connected to another TTL logic

device’s output. Its output could be connected to a humble LED, or it could be connected to

another TTL logic device’s input. The microcontroller itself is unaware of what it is connected

to. The way that we program the MCU can ignore the type of device that it is connected to.

But what matters is what the program actually does. This chapter focuses on simple I/O pro-

gramming, but later we will rely on these input/output drivers to connect to other chips and

perform advanced communications. So, this is this GPIO foundation is the base for the rest of

our work with microcontrollers.

1.3.7 Troubleshooting

When working with GPIO, there are several common problems that can manifest themselves

as either hardware or software problems. Debugging requires not only debugging the soft-

ware but making sure the hardware is functioning properly as well. There are many different

problems that can be encountered along the way. This list is a start, it isn’t meant to be exhaus-

tive. The key to debugging microcontroller applications is to make every attempt to isolate

the problem as either hardware or software and use that to focus the debugging process – but

never get “mission blindness” and fail to be willing to rethink where the bug occurs.

Sudden Reset The primary symptom of this problem is that enabling an I/O line causes

the microcontroller to reset. For example pressing a button (that isn’t intentionally a reset

button!) makes the system reset. Another version of this is that while running code, enabling

an output line causes the system to reset. The most common reason for this is a short circuit

that is established only through the input or output device. For example, pressing a button

causes a short through the switch which overloads the power-supply and causes it to sag and

drop out.

The fix is to use a continuity meter or continuity function on a multimeter, and while testing

the branches of a circuit involved at the time of the short, look for the short and add current

limiting resistors as needed. If the problem is the microcontroller, make sure that the initial-

ization is completed in the proper order - such that the microcontroller stays in Hi-Z mode

until the output port is configured and ready.
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Stuck Bit This problem shows up as a port that always reads as a one or a zero. This problem

may be related to an electrical problem where the I/O port is always connected to part of the

circuit that is directly connected to power or ground. If the hardware is tested and otherwise

functioning properly, the problem is probably in software. If the software is misconfigured,

the microcontroller may not have disabled the output buffer and the output buffer is driving

the input value. Make sure the TRISx register is setup correctly. There is a chance that previ-

ous damage to the MCU has damaged the input buffer. Generally, damage to the input buffer

will probably damage more than just that one buffer.

Random Input Values Most microcontrollers are very tolerant of a wide range of input volt-

ages, but there are limits. When the voltage at the pin is between the HI and LO ranges, it is

up to the trigger values to determine logic high and low, and small changes can “flip the bit”.

This particular problem can be difficult to track down. One common cause is that a branch of

the circuit that is connected to the I/O pin gets connected to another path to ground, creating

a voltage divider. With the I/O voltages already being small, even a small voltage divider can

drop the voltage below the upper range. Check for the resistances between the power supply

and ground along the branch of the circuit, checking for unintentional voltage dividers along

the path. This problem is seldom caused by software.

Low Output The microcontroller isn’t raising the output voltage to its advertised limit. Sim-

ilar to the previous problem, there is most likely a voltage divider on the output circuit. Again,

the problem is probably not hardware, however it is insufficient to rule out software. Micro-

controllers are fast enough today that they can oscillate faster than a multimeter can properly

measure. The side effect is that the voltage gets measured incorrectly. To rule this out, a high-

speed oscilloscope can be used to inspect the wave form on the output line to ensure it is not

oscillating, and that the output voltage is consistent. The low-output problem can actually be

a design feature for controlling the brightness of LEDs - by pulsing the output line the LED

appears dimmer in proportion to the frequency of its on to off time.

Lack of I/O Response Most microcontrollers are designed with some separation between

I/O banks. If one bank of a microcontroller is damaged, it is possible that the rest of the

microcontroller may be partially operational. Generally, the symptom is that the effected mi-

crocontroller will not work with any program, while the program will work on another micro-

controller. This happens especially when prototyping, and the microcontroller is frequently
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Figure 1.14: Coffee maker controller.

exposed to improper voltages or currents, and ultimately the part becomes damaged. After

fixing the circuit, discard the chip and replace with a new one.

1.3.8 Real World Example : Coffee Maker

Programmable Coffee Makers have become common household appliances. Using a real-

time clock, they start brewing at a pre-determined time so you can enjoy your morning coffee

without having to wait. Like other electric coffee makers, they contain a heating element to

boil the water and keep the carafe hot. Modern units contain a microcontroller to manage the

start time, monitor and adjust the brewing temperature and strength, and will even remind

you when its time to clean the unit.

Figure 1.14 shows the controller board from a popular brand of coffee maker. The con-

troller gets its power from household mains AC (in the USA it is 120 V). This is needed for

the 900 W heating element, but is also used to power the microcontroller. The AC to DC con-

version happens using a diode bridge rectifier, a current limiting resistor, and a Zener diode to

clamp the voltage to 5 V (all of this is on the other side of the circuit board).

The board is controlled by an 8051-compatible Sino Wealth SH79F081 microcontroller. Al-
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though Sino Wealth is not one of the common manufacturer names, the 8051 architecture

certainly is. The microcontroller has connections to the LED display, buttons, a relay, and the

temperature sensor. Relays and temperature sensors will be covered in later chapters.

The LED controller is highlighted in yellow. We can see each of the GPIO lines on the PCB

connecting the microcontroller to the LED module, and then we can see the series resistors

used to limit the current through each of the LEDs. This style of hook-up is typical of the LED

schematic described previously in the chapter, there are just several of them.

The push-button switches are highlighted in orange. The MCU provides power and

ground to the switch (a slightly different arrangement than described above). Because the

MCU provides both power and ground we eliminate the need for pull-ups or pull-downs. In

addition, we see a surface mount capacitor, labeled C13, parallel to the path from the switch.

This capacitor is used for debouncing the switch.

Finally, we see an LED indicator highlighted in red. The MCU uses the GPIO line to drive

the LED. A series 100 Ω resistor limits the current through the LED. This is almost exactly

like the LED circuit previously described. If you pay careful attention to the LED line at the

MCU, we see that the LED line is shared with TMS, one of the JTAG signals. Although this

board does not include a JTAG connector, there are test-points that would allow an engineer to

solder wires to the JTAG connections and hook up an emulator to debug a component. The

problem is that the series resistor would conflict with the JTAG emulator. As a result, the

PCB layout includes small jumper wires which are soldered on the other side of the board. To

debug the board, we would de-solder the jumper wires (or cut them), and to restore the LED

operation we would re-install jumper wires.

While the actual printed circuit board (PCB) is a little more complicated than our previous

examples, some elements should look familiar. Already we see how the MCU interfaces to its

buttons, LEDs, and displays. The picture of the actual coffee maker shows the control pad as

the user would normally see it. After stripping away the button caps and display bezel, we

now see that the PCB is nothing more than the devices and the wiring between them. With

some experience, almost any device can subjected to this type of post mortem examination, and

just about every device will have some variation on these basic device connections.
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1.4 GPIO Programming

So far, we have examined the construction of an I/O cell, and its electrical characteristics. This

section shifts our attention away from the physical world to the programming environment

and explores how to perform basic I/O operations on a GPIO port. This section introduces

several important concepts, including memory mapped I/O, I/O banks, and bit masks.

1.4.1 Memory Mapped I/O

Input and output are always performed from the perspective of the central processing unit

(CPU). Input to the CPU means reading data from a device, and output from the CPU means

writing data to a device. Historically, there are two mechanisms for initiating communication

between the CPU and the device: special instructions or memory mapped I/O.

Early computer systems, such as the Intel 8051 and even Intel’s early microprocessors

such as the 8086, used special instructions to access peripherals connected to the CPU. Intel

included IN and OUT instructions to interface to an I/O peripheral. The disadvantage to this

is that Assembly language routines must be written to initiate these instructions requiring

code to be just a little less generalized and the control unit to be a little more complex.

The alternative is to use the standard memory loads and stores but direct them to the

I/O peripheral instead of just the system’s RAM. In a memory mapped I/O system every

peripheral is given an address range. When a memory access for that range is detected, the

device that has been assigned to that range will handle the request instead of the memory. In

this way, I/O becomes a natural extension of the memory system of the processor.

Of course, this means that every peripheral is assigned some part of the system’s mem-

ory address space. It also means that the peripheral must transfer a word of data at a time.

Transferring a single bit requires transferring an entire word of data, typically 32-bits. For this

reason, the individual I/O cells are grouped together into banks, typically 16-or 32-bits wide.

The GPIO port shown in Figure 1.1 was a single GPIO cell. It is one bit wide, and is

connected to a single I/O port. Even early microcontrollers had more GPIO lines than could

be referenced by a signal register. Modern devices such as the TI’s TivaC and Microchip’s

PIC32 can have more than 100 GPIO lines. Consequently, the GPIO lines are grouped into

banks of 16 or 32 lines each. Each bank is identified by a name, such as PORTA, PORTB, ...,

PORTn. Using this name, all of the pins in the bank can be read or written as a group.

Listing 1.3 shows a C-like example of a GPIO peripheral controller. The three arguments

to the function represents the memory bus, with its address, data (which can be either read
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Listing 1.3: GPIO Peripheral Functional Model
1 gpio_port_t ports[8];

3 int gpio_peripheral(int sysclk, unsigned int address, unsigned int *data, unsigned int read_not_write)
{

5 if ((address == GPIO_ADDRESS) && (read_not_write == READ)) {
for (int i = 0; i < 8; i++)

7 ports[i].read_port = 1;

9 wait_next_clock( sysclk );

11 *data = 0;
for (int i = 0; i < 8; i++) {

13 *data = *data | ports[i].data_bus << i;
ports[i].read_port = 0;

15 }
}

17 }

or written by the function, so it is a pointer here), and read_not_write to select whether

the data should be read or write. Of course, the peripheral controller (probably) isn’t written

in C language, this code snippet at least shows how the decisions would be made. This code

could be triggered on each edge of a clock pulse. If the current memory address is a match for

the specific GPIO peripheral the control lines that are selected to be read or turned on. After

a clock cycle delay, each of the I/O cells that were selected for read are concatenated into a

single word that be given back to the CPU for a load word value.

Each of these I/O banks are accessed using a unique memory address. For example,

PORTA could be assigned a memory address (in hardware) as 0x1000_0000 and PORTB is as-

signed an address of 0x1000_0004. If we were to read from that memory address the results

would be from the I/O cells’ flip-flops (as opposed to the values stored in the chip’s memory).

Writing to that memory address would store change the values in the I/O cells’ flip-flops.

1.4.2 C Language Mapping

In C language, to access a specific memory address we use a pointer. In this case, we need a

pointer as wide as the GPIO bank, which is typically an integer. The microcontroller’s vendor

will provide a mapping of meaningful names to these pointers. For example, the vendor will

provide a standard header file with declarations such as:

1 #define PORTA (*(unsigned int *)0x10000000)
#define PORTB (*(unsigned int *)0x10000004)

The expansion of the PORTA and PORTB symbols is interesting. The hardware address is

located at a known physical memory address. The address needs to be typecast to a pointer

type to force C to treat it as a memory address as opposed to a literal integer. However, since it

always just a pointer to a single integer, there is a dereference operator in front of each pointer.
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Whenever the symbol PORTA the C pre-processor will translate this to be a load or store word

instruction to the CPU.

Then, these I/O ports can be accessed as if they were variables. For example:

PORTA = 0x8001;

would be converted to a store word of a immediate value to the memory address associ-

ated with PORTA.

Since this is writing a value to an I/O bank, this will simultaneously turn on the 15th and

0th bits, and turn off all of the other bits in the same bank. Likewise, individual pins can be

read or written using masking techniques (see Appendix ??, Section ??). For example:

1 PORTF = PORTF | (1 << 15) | (1 << 0);

uses the bit shifts to turn on the 15th and 0th bits of the PORTF register.

1.4.3 Port Configuration

There are a number of control signals shown along the left-hand side of Figure 1.1, such as

SYSCLK, Data Bus, RD PORTx, and WR ODCx. These control signals are set by the GPIO

peripheral controller, a device that is not shown. When it detects a load or store to one of its

memory mapped registers it will set or clear the appropriate control lines to handle the re-

quest. For example, when the GPIO bank A peripheral detects a load from its PORTA memory

address, then it activates the RD PORTx control lines for all eight of its GPIO ports. It connects

each of the single-bit Data Bus lines to the CPU’s 32-bit data-bus and signals to the CPU that

the value is ready.

In this way, memory-mapped I/O allows for straightforward integration of the various

peripherals in the computer system with the software running on the microcontroller. So, if

we start with a C language statement like:

TRISA = 0x3;

The compiler will turn that C code into the following MIPS assembly which loads the

address of TRISA, loads the immediate value and then executes a store-word instruction:

1 LA \$t0, TRISA
LI \$t1, 0x03

3 SW \$t1, 0(\$t0)
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Table 1.4: Tri-State Buffer Input to Output Mapping

TriState Port Direction Output

0 0 Output 0
0 1 Output 1
1 0 Input Z
1 1 Input Z

1.4.4 Setting Port Direction

Section 1.2 introduced the organization of a typical GPIO port which includes two buffers,

one for input and one for output. The input buffer, which is always enabled, is always in

high impedance mode. The output buffer can either be disabled, leaving the I/O cell in high

impedance mode only, or it can be enabled and then connect its output to the supply voltage

(logic high) or connect its output to ground (logic low). Because of this, each I/O cell is said

to be a tri-state buffer. Table 1.4 shows the truth table for a typical GPIO port.

Consequently, a GPIO port’s direction must be set before they can be used for input or

output. In some applications, the directionality of the GPIO port is constant. In this case, it can

be set as part of the overall system initialization. In other applications, the directionality may

change based on the behavior of the rest of the system. Either way, it is important to ensure

that the direction is set in the tri-state register before reading or writing the port register.

1.4.5 Reading from the GPIO Module

Reading from a GPIO port require setting the tri-state register to the proper direction and then

reading from the proper port register. The following example illustrates how to read from a

switch. Figure 1.15 shows the schematic of a microcontroller connected to a switch. When the

switch is closed, current can flow through the resistor and switch and there will be 3.3 V on

the port. When the switch is closed, no current flows, and there will be 0 V on the port. The

Schmitt triggers will capture the change voltage and store it in the flip-flop latches.

Listing 1.4 shows how to initialize the GPIO port for input, and then how to read the GPIO

port. The code will spin in an infinite while loop and will turn on an LED when the switch is

closed and turn of the LED when the switch is open.

The C compiler would compile the code in Listing 1.4 into the Assembly code shown

in Listing 1.5. Note how reading from the PORTA peripheral is compiled into a simple LW

instruction, just like any other memory address.

To keep the design of the CPU consistent, regular, and simple; when the CPU encounters
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Figure 1.15: A simple switch and an LED circuit

Listing 1.4: Wait for a button press
1 void setup_bank_a( )
{

3 // port A1 is input, A0 is output
TRISA = (1 << 1) | (0 << 0);

5 }

7 int switch_is_pressed( )
{

9 return PORTA & 0x01;
}

11
int main( )

13 {
setup_bank_a( );

15 while (1) {
if (switch_is_pressed())

17 turn_on_led( );
else

19 turn_off_led( );
}

21 }

Listing 1.5: Assembled button press code
1 while_loop: LA $t0, PORTA # load address of PORTA

LW $t1, 0($t0) # load the value at PORTA
3 ANDI $t1, $t1, 1 # only look at bit 0 of PORTA

BZ $t1, while_loop # if its zero, loop
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the LW instruction it passes the address on to the memory controller. The memory controller

steers the request to the proper device, but only as a normal memory read or write. When

the peripheral detects the read or write it translates the memory request into its own internal

implementation - in this case, reading from the ports. Ultimately, we get the 8-bit byte from the

peripheral put onto the memory bus, the CPU’s pipeline handles the result from the memory

bus by storing the 32-bit word into $T1 register, and the program continues as normal.

We have successfully traced the entire read operation - from C code, to Assembly, to CPU

execution, to memory bus steering, to the peripheral module setting the controls on the ports,

to the Schmitt triggers mapping the voltage of the switch into a logic-high or logic-low. This is

the basis for GPIO, and in fact, is the basis for almost all other types of input to any computer

system.

Registers versus Memory All the peripheral devices have addresses in the address space,

and we communicate with them through the memory bus, and they may even store values,

they are not memory. But they aren’t CPU registers either. To help differentiate between

memory and CPU registers, these peripheral devices are often referred to as Special Function

Registers (SFR). Most embedded tool-kits give these SFR’s special treatment. In Microchip’s

PIC eco-system, the SFRs are available as variables to C and Assembly coders. The debugging

tools allow users to view the values of the SFRs, and will even interpret the configuration of

the peripherals from the values of the SFRs.

1.4.6 Output

The GPIO port’s output section, shown in Figure 1.16, has an output tri-state buffer (B), and

output latch (F), tri-state control (G), and open-drain control (H) flip-flops. Together with the

output control lines, these manage the output operation of the GPIO module.

Output Tri-State Buffer

Recall from Section ??, a buffer’s input is a high-impedance input, and the output could be

one of three states: sinking ground (logic 0), sourcing current (logic 1), or high-impedance (Z).

There are times that we want the GPIO port to be in one of the three modes. Since the input to

a buffer can only ever be high-impedance, we cannot do this with just a single tri-state buffer.

We will add another tri-state buffer (B) to handle the output modes for the GPIO port.

While the input buffer had its input connected to the I/O pin, the output buffer has its
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Figure 1.16: Output Section of GPIO Port

output connected to the I/O pin. When the GPIO port is configured for input then the output

buffer should be disabled (its output is in the high-Z mode) so that it does not interfere with

the operation of the input buffer.

The output buffer (B) is controlled by the output of a multiplexor. This multiplexor is

part of the Open-Drain Control that will be discussed in Section 1.4.6. The only time that the

multiplexor would not select the TRISx control line is when the Open-Drain mode is used, so

we can safely ignore it for now.

The source of the TRISx line is another D-Flip-Flop Latch (G) whose output goes through

an inverter, a buffer that always drives the opposite of its input. When the TRISx latch stores

the value 0, the inverter flips it to a 1, and the output buffer is turned on. When the latch

stores the value 1, then the inverter flips it to a 0, and the output buffer is turned off.

WR TRISx and RD TRISx Control Signals The TRISx flip-flop latch is shown having a

control line connected to an enablement signal EN on the Flip-Flop. When the GPIO peripheral

determines that we are writing (store-word instruction) to this flip-flop, it will put the value

we are writing on the data bus and enable the WR TRISx control signal. After one clock cycle,

that will cause the flip-flop to latch-up and store the new TRISx value.

The peripheral module will use a Special Function Register for the TRISx control signals,

and unsurprisingly, it is called TRISx. Just like we had PORTA and PORTE, we have TRISA

and TRISE. Bits 0 through n of the TRISx register corresponds to the first through the last
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Listing 1.6: Toggle RA5
// toggle port RA5

2 void toggle( )
{

4 TRISA = TRISA & ˜0x04; // set port RA5 as output
int v = PORTA & 0x04; // get old value

6 v = (˜v & 0x04); // flip 5th bit

8 // and mask out old value, or in new
PORTA = (PORTA & ˜0x04) | v;

10 }

ports in the bank. Like the PORTx SFR, the TRISx SFR will have its own memory address

that corresponds to its bank and that will be recognized by the bank’s peripheral controller.

Reading or writing to this SFR will drive the appropriate control lines.

The use of a flip-flop here allows the last value that was written to be remembered by the

GPIO module, the flip-flop is essentially 1-bit memory cell. The value stored in the latch will

remain until the peripheral asserts one of the corresponding enable lines and the new value

is latched up by the flip-flop. The flip-flop is a piece of hardware, its not software, and so

as hardware, it never stops being hardware, and it never stops driving its output. So, the

microcontroller can write a value to the flip-flop, it will be stored, and then constantly driven

until the next time the flip-flop is changed. This allows the microcontroller to set the state of

the port and then go on to run other code. The flip-flop will continue to drive its output lines,

just like if you walked over to a light-switch and turned the lights on. You don’t have to stand

there and hold the switch to keep the lights on, the switch will do that for you.

When the GPIO peripheral is reading from this flip-flop the peripheral will assert the RD

TRISx control signal, which will enable the tri-state buffer that connects the TRISx flip-flop’s

output to the shared data-bus. The GPIO peripheral can then use this to allow a program to

read the value of the TRISx flip-flop.

The diagram shows that the TRISx flipflop Q signal will go through the inverter to the

output buffer as an enable signal. The TRISx special function register uses a 0 as the value

to indicate output, and a 1 to indicate input. As a mnemonic, think 0 looks like an Oh for

output, and 1 looks like an I for input.

Using the TRISx values we can select the mode (input or output) of the GPIO port. Most

programs modify both TRISx and PORTx to ensure they are configured correctly for the par-

ticular application. Listing 1.6 shows a sample of a C program that toggles the 5th bit of

PORTA.
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Output Latch

The output latch, LATx, stored in a D-Flip-Flop (labeled F in Figure 1.16) holds the value that

will be conditionally driven to the output buffer. We can follow the line coming connect to

the output (Q) of the flip-flop and trace it directly to the output tri-state buffer (B). Just like

the TRISx flip-flop, when a value is written to this flip-flop it will be remembered until its

changed by the MCU.

One difference from the TRISx FF is that instead of a signal write-control line, there are

two write control signals, WR LATx and WR PORTx from the GPIO peripheral. Both of these

signals enter an OR gate, and if either one is logic high, then the output of the OR will be

high, and then the flip-flop will update its data data to whatever value is being driven onto

the data bus. Because these control signals are OR’ed together, then we can write to either the

LATx or PORTx SFR’s and the peripheral will update the LATx register. So, why have these

two different signals that both write to the same latch?

The answer is that there are also two different signals for reading - RD LATx shown in the

output section of Figure 1.16 and RD PORTx shown in the input section of Figure ??. Reading

from the PORTx SFR will activate reading directly from the input port flip-flops - even if the

port is in output mode! However, reading from the LATx SFR will always return what was

previous written to the LATx register. So, the PORTx will return what is presently on the input

port, while the LATx will return what was previously written to the flip-flop.

Open Drain Configuration

The Open Drain Configuration (ODC) is a special output mode supported by some microcon-

trollers. The term comes from a MOSFET, which has a gate, drain, and source. In a simplified

model of an N-type FET, when the voltage between the gate and the source (Vgs) exceeds the

devices threshold (typically 2.5 V), then the FET will saturate and start conducting from the

drain to the source. If the voltage is less than the threshold, the FET is closed and will not

conduct from drain to source.

As the name suggests, the drain of an internal FET is not connected internally, but is con-

nected to the I/O pin. When the internal FET starts conducting, then it opens a path to the

source (usually ground) through the open drain, and then the internal FET is not conducting,

the open drain is effectively a high-impedance point.

Open-Drain Configuration is used to allow a microcontroller to operate with devices that

require a higher voltage than the MCU can source. For example, a special LED requires 5 V to
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Figure 1.17: Open-Drain Configuration. (a) shows an ODC controlling a 5 V device, while (b)
shows an ODC controlling a 5 V FET which controls a 24 V device.

Table 1.5: Open-Drain Configuration Possible Values

Input Output
TRISx LATx Not TRISx Not LATx Enable Value

0 0 1 1 1 Z
0 1 1 0 0 0
1 0 0 1 0 Z
1 1 0 0 0 Z

turn on, but the MCU can only drive 3.3 V. Figure 1.17 shows two circuit paths that demon-

strate using the ODC port. This mode is especially handy for dealing with high-powered

MOSFETs that typically have a higher turn-on voltage threshold.

The way this is implemented is that the output driver is togged between input and output

modes depending on the value that is written to the output latch. If the port is configured

for output (TRISx = 0) and open drain mode (ODCx = 1), then the output port is either

sinking to ground or is disabled (high-Z).

The AND gate (I in Figure 1.16) takes the boolean AND of TRISx latch and the negation

of the LATx latch, and that is passed into the multiplexor that controls the output buffer.

Table 1.5 shows the possible values for the ODC port.

The ODC module is really just a convenience. By configuring ODC, when the program

writes a 0 to the LATx latch, the port sinks to ground as normal (this is due to the negation of

the input and the AND gate). However, when the program writes a 1 to the LATx latch, the

negation flips it to zero, the AND gate outputs a zero, and the output buffer is disabled, and

we are back to high-Z mode. This allows a program to configure a port for output using ODC

and then write 0’s and 1’s to turn the port off and on as normal.

The same behavior can be realized using PORTx and TRISx registers (and will be explored

as a homework question!).
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1.5 GPIO Programming

The focus of this chapter so far has been on the GPIO hardware. This section introduces sev-

eral techniques for developing applications that use GPIO modules. GPIO programming is

the principle starting point for any microcontroller development. In fact, for most program-

mers, the first thing they do is write a ‘hello world’ program. The microcontroller equivalent

to ‘hello world’ is the ‘hello LED’ code, where we get an LED to blink. From there, the section

describes several more advanced techniques.

1.5.1 Combinational Logic

One of the simplest microcontroller applications is to implement combinational logic. Com-

binational logic describes a logical function whose output is determined only by the current

input, with no memory of past input. Combinational logic circuits can be built using only

Jelly-Bean Logic. Most importantly, because they don’t involve any memory or clock, they

are completely reactive to their input. This section compares implementations using Jelly-

Bean gates and a microcontroller; and will look at when it is appropriate to use one over the

other.

Logic Gate Version

Figure 1.18 shows a simple combinational logic circuit built using logic gates. There are three

inputs: Run is connected to a switch that is logic high when the machine should be running,

MOTOR SLOW is driven by a speed sensor, so that when the motor is running too slow, it will

be logic high, and when the motor is running above, it will be low, and finally a HOOD OPEN

signal that is connected to a switch, if the safety hood is raised up, then this signal is high, and

is low otherwise. There are also two outputs, MOTOR POWER will be high when the motor

should get power, and ALARM which will be high if an alarm should sound. For safety

reasons, there should be at most a 1 ms delay from when the hood opens and when the power

Figure 1.18: An alarm made up of combinational logic
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Figure 1.19: Circuit board layout for Combinational Alarm

is cut and the alarm goes off. Although highly simplified, this is a typical application of for

digital logic.

In the days before microcontrollers, this circuit could actually be built using logic gates.

The logic diagram of Figure 1.18 was mapped into a 7404 Hex-Inverter, and a 7408 Quad AND-

Gate. Using the circuit shown in Figure 1.19 diagram, a circuit board could be built, the wires

from the inputs and outputs could be fed into its connectors, and the circuit would function

as designed.

Microcontroller Version

Combinational logic is easy to implement in an MCU. The simplicity of the logic helps expose

important details about programming an MCU.

First, the designer needs to assign the input and output signals to appropriate (and un-

used) pins on the microcontroller. Many microcontrollers projects start with a reference board,

a circuit board designed to support developers by placing a minimal set of components on

a circuit board and opening the device to external input/output. If that is the case, then the

choice of available pins may be limited to what the reference board has left open. It is good

practice to document the mapping of logical signals to a pins, both in the source code as a

source code comment and on the board or wires as labels.
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Listing 1.7: Combinational Logic Example
#include <p32xxxx.h>

2
// B0 = Run, B1 = Motor Slow, B2 = Hood Open

4 // B4 = Motor Power, B5 = Alarm
int main( )

6 {
PORTB = 0;

8
TRISBbits.TRISB0 = 1;

10 TRISBbits.TRISB1 = 1;
TRISBbits.TRISB2 = 1;

12 TRISBbits.TRISB3 = 0;
TRISBbits.TRISB4 = 0;

14

16 while(1) {
PORTBbits.RB4 = PORTBbits.RB0 & PORTBbits.RB1 & ˜PORTBbits.RB2;

18 PORTBbits.RB5 = PORTBbits.RB0 & PORTBbits.RB2;
}

20 }

Next, the microcontroller’s GPIO module must be configured, which involves configuring

selected tri-state buffers to match the assigned task of the pins. The GPIO port driver buffer

should be initialized prior to enabling output to ensure that the output values are appropriate

prior to actually driving those values on the port.

One-shot vs. infinite rounds Finally, the code should compute the output from the input.

The logic chips of the previous section are always logic chips. As long as they are powered

up, the AND gate will always compute the AND function of its inputs. The microcontroller

should do the same thing. If the MCU code were to compute the output and leave main(),

then the MCU will enter an idle state and won’t continue computing the output state. This

behavior is called one-shot.

One-shot programming is typical in conventional applications programming. In fact, it is

hard to imagine any alternative. For example, in a typical, General-Purpose program, when

we want to compile a program, we invoke the C compiler, it compiles the source code, and

terminates (that is one-shot behavior). Since a conventional, General-Purpose computer is

designed to run many different applications on demand, it doesn’t make sense to keep a pro-

gram running when it is finished. Therefore, it makes sense that as soon as a task is finished,

it should exit and free up all of its resources to make room for other programs that the user

might want.

Microcontrollers are special-purpose computers that only run one task, and only that one

task. Usually, it is not a good thing for that one task to terminate - it means that the MCU

won’t ever run that task again without being reset. To make this happen, microcontroller

code often includes an infinite while loop that spins around its loop, forever executing the

same code over-and-over. This yields behavior similar to the logic chip.
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MCU implementation An implementation of the combinational logic of Figure 1.18 is shown

in Listing 1.7. This code follows the template described previously in this section. The code

documents the assignments of pins to logical signal name. The port values and tri-state

buffers are setup to match the directionality of the signals. The combinational logic computes

the output inside an infinite while loop. So, as long as the chip has power, it will continue to

read its input and compute the proper output.

Black Box Equivalence

Two implementations of the combinational logic were presented: one using discrete logic

gates and the other using a microcontroller They both have the same input and they both take

the same output. As a thought experiment, suppose both implementations were built, that

is two circuit boards were built, one with the logic chips and the other with a programmed

MCU. Both boards were each hidden inside a black box that only had connections for the

input and output ports, and that both boxes were completely identical on the outside. Is there

any way to tell which box contains the MCU and which contains the logic gates?

Functional Equivalence The two boards implement the same logic function and are func-

tionally equivalent. Every combination of input to either board will produce an equivalent

output. Because they are functionally equivalent, this cannot inform us which board is in the

box. Functional equivalence is absolutely critical in establishing that two devices are compa-

rable.

When deciding functional equivalence, it is equally vital to look at the functionality that

the problem needs. For example, if we packed up a desktop computer into one of these black

boxes, the computer could certainly do more than the either of the other devices, but as far

as this problem is concerned, we are only interested in the combinational function described

earlier.

Speed What if the two black boxes were connected to an oscilloscope which measured the

time between when the input changes and when the output changes. This measures the prop-

agation delay between input and output. After taking measurements, one device is found to

have a delay of 45 ns and the other device has a delay of 40 ns. Both devices are well within the

1 ms tolerance of the problem, but timing gives a clue to which device is which. Will the dis-

crete logic gates developed in the 1970s be faster than a twenty-first century, fourth generation

80 MHz MCU?



CHAPTER 1. GENERAL-PURPOSE I/O 41

Even though the MCU is running at 80 MHz, each pipeline stage still requires 2 clock cycles

(Section ??). There are no conditional branches, the PORT registers operate at SYSCLK speeds,

and the instruction forwarding eliminates hazards. Listing 1.8 shows an optimized assembly

code for this project’s loop. Based on the listing, we see that the MCU implementation of our

C code needs 16 instructions.
Listing 1.8: Assembly implementation of the combinational logic example

#PORTBbits.RB4 = PORTBbits.RB0 & PORTBbits.RB1 & ˜PORTBbits.RB2;
2 #PORTBbits.RB5 = PORTBbits.RB0 & PORTBbits.RB2;
# s0 has addreses RB4

4 L1: # top of the infinite while loop
lw $s1, 0($s0) # load port B into memory

6 ext $t0,$s1,0,1 # get bit 0
ext $t1,$s1,1,1 # get bit 1

8 srl $t1, $t1, 1
ext $t2,$s1,2,1 # get bit 2

10 srl $t2, $t2, 2
not $t4, $t2 # ˜ RB2

12 and $t4, $t4, $t1 # and $t5 and rb1
and $t4,$t4,$t0 # rb4 has value

14 and $t5,$t0,$t2 # rb5 has value
sll $t4, $t4, 4 # move rb4 over 4

16 sll $t5, $t5, 5 # move rb5 over 5
ins $s1,$t4,4,1 # insert the bit into S1

18 ins $s1,$t5,5,1 # insert the bit into S1
j L1 # jump to L1

20 sw $s1, 0($s0) # branch delay slot!

We are running 40 million instructions per second, and in the worst case, we must execute

16 instructions:

TMCU =
1

40, 000, 000
· 16 = 400ns (1.8)

The critical path through the logic gates involves passing through three gates: the NOT

gate, and two AND gates. The NOT gate has a propagation time of 9 ns and the AND gate

has a time of 18 ns. The expected time is:

TGATE = 9 + 18 + 18 = 45 ns (1.9)

So, the discrete logic chips from the 1970’s were actually faster than the modern microcon-

troller! In fact, they were more than 8 times faster (for this problem). The logic delays are actu-

ally quite high by today’s standards. If we used more modern devices with sub-nanosecond

delays, the gap between the MCU and the logic gates would be even more apparent. The tim-

ing analysis for the source code was highly simplified, and will be examined in greater detail

in Section 1.5.6.

Cost Ignoring the board costs, the discrete logic chips costs were about $0.75 total. The MCU

costs about $1.50, twice the cost of the chips. So, we can use cost as another way to tell the

two black boxes apart. But will this always be in the logic-chips favor?



42 1.5. GPIO PROGRAMMING

Figure 1.20: Seven segment display, displaying the number 3.

If the logic function were to change and require more gates, the price of additional chips

will tip us over the cost of the small MCU. This little program probably uses less than 1% of

the available program words in the MCU. The logic function can grow to include considerable

complexity before the MCU must be replaced with a larger unit. So, applications that need

one or two logic chips may be cheaper than an MCU, but beyond that the MCU will generally

be more cost effective.

Additionally, if the logic function has any possibility of changing in the future, then the

logic gates may need to be reorganized, needing a major revision to the circuit board, which

can be a significant cost. The MCU can change by simply upgrading its firmware, in many

cases the board may not need to change at all. Because they can be more easily reprogrammed

to accommodate system changes, if the component costs for MCUs versus discrete chips are

even remotely close, the MCU is still probably the most cost effective.

1.5.2 Seven-Segment Display

A seven-segment display uses 7 LEDs to display a number of digits, some letters, and sym-

bols. Most common configurations include a common power source and seven control lines.

Some units include current limiting resistors, others require them to be external to the module.

An example is shown in Figure 1.20.

The display in Figure 1.20 is displaying the number three. A different configuration of

ground or high-impedance values would allow us to display all of the decimal digits, and

even some hexadecimal values.



CHAPTER 1. GENERAL-PURPOSE I/O 43

Listing 1.9: BCD to Seven Segment Display
#include <stdint.h>

2 #include "port.h"

4 #define NUM_NUMBERS (10)
// store the 7 segment values as 7-bit value: ABCDEFG

6 static uint8_t numbers[] = {
0b1110111, 0b0010010, 0b1101011, // 0,1,2

8 0b1011011, 0b0011110, 0b1011101, // 3,4,5
0b1111100, 0b0010011, 0b1111111, // 6,7,8

10 0b0011111 // 9
}

12

14 void main( )
{

16 TRISB = TRISB & ! 0x7f;
TRISA = TRISA & 0xf;

18 while(1) {
uint8_t bcd = PORTA & 0x0f;

20 PORTB = numbers[bcd];
}

22 }

Listing 1.9 shows an implementation of a BCD to Seven-Segment display driver. The C

code use the first 4 pins on PORTA to read a binary-coded-decimal number. Since we are only

reading one decimal digit, BCD just means the number is encoded in binary. For example, 5

would be encoded as 0b0101. The code also uses a Lookup-Table (LUT) to map the BCD value

to the bits that should be turned on or off on the display. The LUT expects that the display

is mapped exactly to the first 7 bits of port B. This is typical combinational logic. As fast as the

MCU can execute each loop iteration, it will read the input pins and drive the output pins.

While this example works, the source code depends heavily on the organization of the

hardware. Suppose that the circuit board designer has to make a change and move one of the

I/O lines from either PORTA or PORTB? The entire program must be scrapped. Section 1.6

will look at different methods of writing MCU code and will present several strategies that

could improve this example.

1.5.3 Square Wave Output

When programming a microcontroller, the number of instructions that the CPU executes can

directly impact the wave-form that is presented on a port. In this section, we look at creating

a square-wave, an alternating high and low voltage. The following two examples show a

square wave function using two different patterns. The first example, in Listing 1.10, uses

an if/else control to check if the port was high then make it low, and make it high otherwise.

The second example, in Listing 1.12, uses the boolean not operator to flip the port bit. Both

function correctly, i.e. they both correctly toggle the port register high to low back to high

again. But they both perform quite differently. The reasons for the different can really only

be seen in the assembly language code. Both Figures 1.11 and 1.13 show the actual assembly
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Listing 1.10: Square Wave Pulse - Using if/else control
void pulse( )

2 {
while(1)

4 {
if (PORTAbits.RA0 == 0) PORTAbits.RA0 = 1;

6 else PORTAbits.RA0 = 0;
}

8 }

language generated by the PIC32 C compiler distributed by Microchip.

Listing 1.11: Disassembled version of Listing 1.10
! while(1) {

2 ! if (PORTBbits.RB0 == 0)
0x9D000258: LUI V0, -16504

4 0x9D00025C: LW V0, 24656(V0)
0x9D000260: ANDI V0, V0, 1

6 0x9D000264: SLTIU V0, V0, 1
0x9D000268: ANDI V0, V0, 255

8 0x9D00026C: BEQ V0, ZERO, 0x9D000290
0x9D000270: NOP

10 ! PORTBbits.RB0 = 1;
0x9D000274: LUI V1, -16504

12 0x9D000278: LW V0, 24656(V1)
0x9D00027C: ADDIU A0, ZERO, 1

14 0x9D000280: INS V0, A0, 0, 1
0x9D000284: SW V0, 24656(V1)

16 0x9D000288: J 0x9D000258
0x9D00028C: NOP

18
! else PORTBbits.RB0 = 0;

20 0x9D000290: LUI V1, -16504
0x9D000294: LW V0, 24656(V1)

22 0x9D000298: INS V0, ZERO, 0, 1
0x9D00029C: SW V0, 24656(V1)

24 0x9D0002A0: J 0x9D000258
0x9D0002A4: NOP

26

In Figure 1.11, the if statement is seven instructions (including the NOP in the branch-

delay slot on line 9). If the port bit is 0, then the branch is not taken, so then lines 11-17 are

executed, returning control back to the top of the while loop on line 3. This case used another

seven instructions. In the case of the else logic on lines 20 to 25, there are only six instructions

including the NOP. The CPU will spend 14 instructions making the output line go from low

to high, and only 13 instructions going from high to low, crucially, the difference is before the

value is stored in memory on line 15, so the extra instruction will keep the GPIO line low for

1 extra instruction time than it will stay high.

The second example, in Figure 1.12, is more efficient. It does away with the if/else and

uses the boolean negation operator. Intuitively, it should be faster because it doesn’t have the

test/branch for the if/else. The actual assembly code is shown in Figure 1.13. Surprisingly,

the execution time is always 14 clock cycles, which is actually the same speed as the previous

if/then example. The reason why can be seen in the assembly code: note that while the C code

looks like it should just be something like: LOAD PORTA, NEGATE PORTB, STORE PORTB,

and it looks like it should only take three cycles. The problem is that we are only negating

one of the 32-bit values, leaving the rest unchanged. So, this code has to isolate the one bit
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Example 1.5.1. Suppose the processor’s SYSCLK is set for 20 MHz. As described in Chap-
ter ??, the processor issues an instruction every two clock cycles, and the forwarding units
eliminate pipeline stalls for dependencies. Compute the high, low, and total period for this
square-wave.
The time period for an instruction is:

TINST =
1

10, 000, 000
= 0.1 µs

Next compute the high and low times:

TLO = TINST ∗ 14 = 1.4 µs

THI = TINST ∗ 13 = 1.3 µs

Finally, the overall period is:

TOV ERALL = TINST ∗ 27 = 2.7 µs

The frequency is about 370 kHz. The jitter in the hi/lo actually accounts for an almost 4%
error rate if this signal were used as a clock.

�

Listing 1.12: Square Wave Pulse - Using branchless control
void pulse2( )

2 {
while(1) {

4 PORTBbits.RB0 = ˜PORTBbits.RB0;
}

6 }

through a series of and/or masks.

Listing 1.13: Disassembled version of Listing 1.12
! while(1) {

2 ! PORTBbits.RB0 = ˜PORTBbits.RB0;
0x9D000358: LUI V0, -16504

4 0x9D00035C: LW V0, 24656(V0)
0x9D000360: EXT V0, V0, 0, 1

6 0x9D000364: ANDI V0, V0, 255
0x9D000368: NOR V0, ZERO, V0

8 0x9D00036C: ANDI V0, V0, 255
0x9D000370: ANDI V0, V0, 1

10 0x9D000374: ANDI A0, V0, 255
0x9D000378: LUI V1, -16504

12 0x9D00037C: LW V0, 24656(V1)
0x9D000380: INS V0, A0, 0, 1

14 0x9D000384: SW V0, 24656(V1)
0x9D000388: J 0x9D000358

16 0x9D00038C: NOP

In general applications programming, students often learn about loop invariants, condi-

tions that are true before and after each iteration of a loop. In this were a general program,

an invariant would be that the port flips its state. In both examples, the loop invariant is met,

but the timings are different. Consider the next example, in Listing 1.14, which obeys the loop

invariant - with each iteration of the loop, if the value was high, it will be low; and vice versa.



46 1.5. GPIO PROGRAMMING

Listing 1.14: Square Wave Pulse - Invariants aren’t sufficient
void pulse1( )

2 {
while(1)

4 {
int x= PORTBbits.RB0;

6 PORTBbits.RB0 = 1;
if (x)

8 PORTBbits.RB0 = 0;
}

10 }

Listing 1.15: A 10 µs delay using pre-processor and intrinsics
#define DELAY_1US() \

2 _NOP(); _NOP(); _NOP(); _NOP(); _NOP();\
_NOP(); _NOP(); _NOP(); _NOP(); _NOP();

4
#define DELAY_10US() \

6 DELAY_1US(); DELAY_1US(); \
DELAY_1US(); DELAY_1US(); DELAY_1US(); \

8 DELAY_1US(); DELAY_1US(); \
DELAY_1US(); DELAY_1US(); DELAY_1US();

But, if the code were run, it would create a wave form where there were several extra cycles

where the output was high, which would be even less balanced than either of the first two

examples. This illustrates a common challenge when learning to code for microcontrollers:

code frequently interacts with the real, physical environment; and timing matters.

1.5.4 Delay Loops

Sometimes, the microcontroller needs to stretch out the length of time a clock is high or low.

This can usually be accomplished a delay loop. The loop executes a number instructions,

usually a no-operation (NOP) instruction, for some fixed number of time. The speed of the

processor determines the relationship between the number of NOPs and the length of time.

Suppose the processor is running at 20 MHz, then a single NOP instruction will require

2 clock cycles, or 0.1 µs. Ten instructions will create a delay of 1 µs, but it is important to

remember that it is ten machine instructions, not C statements! Listings 1.15 and 1.16 both

create a 10 µs delay, but they do it very differently.

Listing 1.15 creates the delay by using uses the DELAY_1USmacro 10 times. Each DELAY_1US

macro uses 10 NOP instruction. So while this is effective, it uses 10 · 10 = 100 instructions for

each delay. Because this is a MIPS32 architecture it actually uses 400 bytes of instruction mem-

ory! With code this size, we also need to pay attention to the prefetch cache on the instruction

memory - if the hit rates aren’t 100%, then this code won’t give the expected delay.

A second attempt is shown in Listing 1.16. This also uses the C pre-processor to define a

function macro, DELAY X US(X), that takes an argument for the number of microseconds to

delay. The function macro starts off with a set of braces, which tells the C compiler to create
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Listing 1.16: A 10 µs delay using pre-processor and intrinsics, with less code
1 #define DELAY_X_US(X) { \

int __i; \
3 for (__i; __i < 10*X; __i++) Nop(); \
}

5

7 ! DELAY_X_US(10);
0x9D000134: J 0x9D00014C

9 0x9D000138: NOP
0x9D00013C: SSNOP

11 0x9D000140: LW V0, 0(S8)
0x9D000144: ADDIU V0, V0, 1

13 0x9D000148: SW V0, 0(S8)
0x9D00014C: LW V0, 0(S8)

15 0x9D000150: SLTI V0, V0, 100
0x9D000154: BNE V0, ZERO, 0x9D00013C

17 0x9D000158: NOP

a new, local scope. The code then declares a local variable, i, and then uses a for loop

that executes for 10 * X times, and in the body of the loop is enough NOP instructions to

make each loop iteration take steps, which gives a delay of 1 µs. The assembly code is shown

in the listing, notice how each iteration is exactly 10 instructions. There is some wizardry

in the arithmetic of 10 * X. Notice that in the assembly code, there is not a multiplication,

and in fact, in the assembly code, there is a SLTI instruction to compare the loop variable

i to 100. The C pre-processor will use constant folding across arithmetic, and will replace

arithmetic expressions with their pre-computed constants wherever it can. Because it did that,

the number of iterations will be computed at compile time rather than run-time (as long as

the argument is a defined constant). This example is much better, using only ten instructions

(40 instruction words) for the total delay loop.

The problem with both of these two attempts is that we assume that the instruction stream

will not be interrupted with any other event. This will turn out not to be true as we move on.

One final version of a delay loop uses code we developed in Chapter ?? for the Core Timer

built into the MIPS32 (and most modern MCUs). Listing 1.17 uses two built-in functions:

ReadCoreTimer and WriteCoreTimer to access the timer. Since the timer always runs

at the same speed, this code will give the most accurate timing available, even if something

interrupts the instruction stream.

1.5.5 Pulse Width Modulation

Using delay loops allows the microcontroller to generate a wide range of pulse-width-modulation

(PWM) tasks, where the width of each pulse is controlled (or modulated) by the microcon-

troller. The brightness of an LED is controlled by the current that flows through it, but in most

applications, the current limiting resistor is soldered into the board and it cannot be changed.

This made LEDs easy to control - just turn them on or off. But what if we want to vary the
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Listing 1.17: A microsecond delay using pre-processor and built-in functions for the core timer. This uses
less code and is more stable.

1 #define DELAY_X_US(X) { \
int __i; \

3 for (__i; __i < 10*X; __i++) Nop(); \
}

5

7 ! DELAY_X_US(10);
0x9D000134: J 0x9D00014C

9 0x9D000138: NOP
0x9D00013C: SSNOP

11 0x9D000140: LW V0, 0(S8)
0x9D000144: ADDIU V0, V0, 1

13 0x9D000148: SW V0, 0(S8)
0x9D00014C: LW V0, 0(S8)

15 0x9D000150: SLTI V0, V0, 100
0x9D000154: BNE V0, ZERO, 0x9D00013C

17 0x9D000158: NOP

Listing 1.18: A simple PWM loop to control an LED.
1 #define WIDTH_US (100)

3 void led_pulse(int percent)
{

5
int ton = (WIDTH_US * percent) / 100;

7 int toff = WIDTH_US - ton;

9 if (ton > 0) {
PORTAbits.RA0 = 1;

11 DELAY_X_US(ton);
}

13
if (toff > 0) {

15 PORTAbits.RA0 = 0;
DELAY_X_US(toff);

17 }

19 }

brightness of the LED?

A pulse-width modulation wave-form can vary the brightness of an LED. Based on the

delay loop of Listing 1.17, we can construct a pulse-width modulation function that will turn

the LED on and off for a varying amount of time. The LED will be on for some time (TON ),

and it will be off for some time (TOFF ). The total time will be TTOT = TON +TOFF . If the total

period is more than 1
100 of a second, humans will perceive a visible flicker. On the other hand,

if the time is too fast, the LED will not full charge or discharge.

We will use a 100 µs total time. Then, we can use a percentage of time that the LED should

be on and use that to drive the delay loops.

1.5.6 Latency

The latency or reaction time of a system is how long it takes from the time an input event

occurs until it responds. As noted in the previous section, the amount of time required to

execute a stream of instructions is predictable. That fact was exploited to create predictable

delay loops, and the same analysis can be used to determine the reaction time of a section of
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Listing 1.19: Drive output to match input, test reaction time.
1 int main()
{

3 while(1) {
PORTCbits.RC1 = PORTBbits.RB0;

5 }
}

7
/* Assembly Code *****************

9 0x9D000240: LUI V0, -16504 # load offset of PORTB
0x9D000244: LW V0, 24656(V0) # load PORTB into V0

11 0x9D000248: EXT V0, V0, 0, 1 # Extract least bit
0x9D00024C: ANDI A0, V0, 255 # extra instruction by compiler

13 0x9D000250: LUI V1, -16504 # load ofset of PORTC
0x9D000254: LW V0, 24720(V1) # load existing PORTC

15 0x9D000258: INS V0, A0, 1, 1 # insert bit into PORTC
0x9D00025C: SW V0, 24720(V1) # store PORTC

17 0x9D000260: J 0x9D000240 # jump back to top
0x9D000264: NOP # branch-delay slot

19 ********************************** */

code.

Listing 1.19 uses an infinite while loop that will drive the PORTC bit 1 to be equal to

whatever PORTB bit 0 is. The Assembly code shows what the Microchip XC32 C compiler

generates for the while loop. There are a total of 10 instructions that comprise the loop. To

assess the reaction time of the code, we need to consider both the minimum and maximum

amount of time between when the input signal goes high and when the output signal goes

high.

The minimum reaction time happens when the input signal change occurs immediately

before the load-word instruction at address 0x9D000244. For this to happen, the signal

would have to change two clock cycles before so the new value would be read by that load

word. The updated instruction will be written eight instructions later, which corresponds to

16 clock cycles. If SYSCLK is at 20 MHz, and each instruction takes 0.1 µs, then the fastest

reaction time will be 1.6 µs.

The worst-case reaction time happens when the input signal occurs during the load-word

instruction at address 0x9D000244. Because of the input latch shown in the block diagram,

the load-word will get the old value, even though the signal has already changed. Now the

current iteration of the loop must finish, the loop must begin again, and then execute to the

store-word instruction. This will require seventeen instructions, 34 clock cycles, or 3.4 µs.

If the processor were clocked up to its maximum 80 MHz, these times will be quartered,

or a best case of 0.4 µs (400 ns). This seems quite fast, especially by human standards. But

this isn’t terribly fast by computer standards. Section 1.5.1 introduced combinations of logic

gates. There is actually a logic-gate that does the same function - it is a device called a logic

buffer, and its designed to make the output follow the input, without placing a current load

on the input. They are used to every level-shift, where the input and output voltages are
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different, or to manage fan-out where the large number of devices connected to a driver will

cause an over-current on the driver, the buffer can be used to expand the number of devices.

A typical 74-series buffer (e.g. 7407 hex buffer) is rated at a typical 20 ns switching time, or

20-times faster than the microcontroller. The microcontroller arrives at the same outcome as

the logic gate, only it trades while-loops and assignment statements for a dedicated network

of transistors.

Figure 1.21: Oscilloscope capture of actual reaction time of code in Listing 1.19

The actual reaction time of code can also be measured using an oscilloscope. Figure 1.21

shows an oscilloscope capture of two signals. The blue signal shows the input to the program,

and corresponds to a device (e.g a switch) raising the voltage on an input line. The yellow

signal shows the output from the program. Each horizontal square is 2 µs. The observed

reaction time is about 7 µs, due to the clock rate differences between the devices.

To be fair to the microcontroller, neither the C nor the Assembly code were optimal. List-

ing 1.20 shows a more optimized version of the program. By carefully setting the tri-state

registers, the registers will ignore any writes to non-output values. Since now, there is only

one PORTC bit set for output, the assignment statement does not need to restrict itself to just

one bit, but can assign the whole integer word, and only the least-significant bit will be set.

By manually re-coding the Assembly source code, the main loop can be reduced to three in-

structions (the LUI is not part of the loop). Now the minimum delay will be four instructions,

and the maximum delay will be 6 instructions, which is more than 4 times faster than before.

Several key points were illustrated in this section. First, because the microcontroller is
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Listing 1.20: Improved reaction time
1 int main()
{

3 TRISB = 1;
TRISC = ˜1;

5 while(1) {
PORTC = PORTB;

7 }
}

9
/* Assembly Code *****************

11 0x9D000240: LUI V0, -16504 # load offset of PORTB
0x9D000244: LW V1, 24656(V0) # load PORTB into V1

13 0x9D000254: J 0x9D000244 # jump back to top
0x9D000248: SW V1, 24720(V0) # store V1 into PORTC

15 ********************************** */

Listing 1.21: Example of failed loop invariants
1 int main()
{

3 while(1) {
PORTCbits.RC1 = 0;

5 if (PORTBbits.RB0)
PORTCbits.RC1 = 1;

7 }
}

running code through a CPU, the time it takes to process input into output will depend on the

clock rate of that CPU, the efficiency of the machine language, and when the event occurs rel-

ative to when the change is detected. Second, even for trivial logic functions, such as a buffer,

the overhead will be many times slower than a dedicated logic chip. Finally, the code must

be optimized to maximize performance, including making best use of the hardware capabil-

ities, organizing the C source code to promote better optimizations, and possibly manually

re-writing the Assembly code to improve on the optimizations of the compiler.

Figure 1.22 shows the output captured by an oscilloscope from running the code of List-

ing 1.21. The blue trace of the figure was the result of a switch connected to an input port. The

yellow trace is the output port connected to an LED. Each horizontal grid represents 4 µs, each

vertical grid represents 2 V. The jump in the blue line is when a button is pressed, causing the

input voltage to go high. There is an 8 µs delay between the switch press and the first time the

port output goes high. Similar to listing 1.14, the first step of the while loop sets the output

port to 0, regardless of what it was before, and then executes the if statement. Because the if

test is true, the branch is not taken, and the code sets the output port high. The port stays high

for 2.4 µs, which is the time it takes for the program to loop back to line 5 of the listing. As

long as the button is pressed, the output will continue to have a pulsed, square-wave output

instead of a steady high output. Although the loop invariants are true, the side effect of driving

an LED is not consistent. Interestingly, the LED does light up in this example, but just not as

brightly as it did in the previous example - so while this is technical incorrect, it does actually

reduce the power-consumption of the LED by 2/3 (it is on for 2.4 µs and off for 4.8 µs).
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Figure 1.22: Port output from Listing 1.14. Blue trace is the input trigger, Yellow trace is the
output to from the port.

1.5.7 Debouncing Switch Input

One of the most common input devices to a microcontroller is a mechanical switch. The switch

typically has a pair of metal contacts that are brought together to make a circuit or pulled apart

to break the circuit. As the metal contacts strike each other, they experience an elastic colli-

sion that causes them to momentarily deform. The collision energy generates a momentary

oscillation where the metal surfaces are vibrate against each other. This phenomena is called

switch bounce. A single activation of the switch can generate a complicated wave-form that

bounces high and low until the contacts settle into their final state.

Figure 1.23 shows an oscilloscope trace (voltage over time) of a switch engaging. The

vertical grids are arranged at 2 Volts per grid, and the horizontal grid is at 40 µs per grid.

The switch bounced for almost 200 µs before it settled down. Note the three negative voltage

drops in the trace, reaching almost −2 V, which are caused by the rapid drop in voltage and

the discharge of the parasitic inductance of the wires connecting the switch. This is one of the

reasons for the diode protection mechanism built into the GPIO port.

There are several techniques for debouncing a switch, the most common being the intro-

duction of a capacitor and resistor to create a low-pass filter to block the bounce noise. While

this is reasonably effective, it can also be handled by the microcontroller. Instead of reacting

to the switch as soon as a level change is detected, a debounce loop will poll the status of the
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Figure 1.23: Oscilloscope capture of switch bounce.

Listing 1.22: Debounce a switch
#define DEBOUNCE_TIME 100

2
int get_switch( )

4 {
int x = 0;

6 int last_switch;

8 while (x < DEBOUNCE_TIME)
{

10 last_switch = PORTBbits.RB0;
for (x = 0; x < DEBOUNCE_TIME; x++)

12 {
if (PORTBbits.RB0 != last_switch)

14 break;
}

16 }

18 return last_switch;
}

switch, and then react only after the switch has been determined to settle down.

Listing 1.22 shows an example of a switch debounce function. The requires that 100 suc-

cessive reads of the port must be the same value in order for the port to be considered settled.

The way it works is that the while loop executes until count reaches DEBOUNCE TIME which

is a sufficiently large number to ensure that the settle time has been reached for the particu-

lar circuit elements. The while loop’s body starts off by capturing the value of the port, and

then entering the for loop. As the for loop executes, if the port status doesn’t change, then it

will complete normally, and the value of count will be equal to DEBOUNCE TIME, so then the

while loop will also terminate, and the value of the switch will be returned. However, if the

switch has not yet settled, then there will be times when the current port status won’t match

the value it was at the beginning of the loop (see line 13). When this happens, the for performs
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an early termination by issuing the break on line 14. Because the count variable is not equal

to the DEBOUNCE TIME, the while loop will restart, which resets the last port status and the

count.

It is almost never acceptable to interface to switches, including throw-switch, push-buttons,

or momentary buttons, without performing some sort of switch debouncing. Suppose we

were writing an application that would count the number of times a button was pressed.

With a fast microcontroller and without switch debouncing, the single physical switch throw

in Figure 1.23 would actually appear as many switch activations, because the faster microcon-

troller will be react to more of the transient pulses.

1.5.8 Switch Multiplexing

The previous section used a single port on the microcontroller for a single switch. Consider

the case of a integrating a numerical keypad on a simple calculator. The calculator would have

10 buttons for the digits, 4 buttons for arithmetic operations, a button for the equals sign, and

another button for the clear. The simple calculator will have 16 buttons, meaning we would

need to use 16 microcontroller ports to detect when one of the switches was pressed, which is

going to be a large chunk out of any microcontroller’s available input ports.

An alternative approach is based on the idea of multiplexing, where one line is used to

connect multiple devices, but only one is active at a time. Figure 1.24 shows a 16-way switch

matrix, where switches are grouped into rows and columns. Each switch is connected to a

unique combination of rows and columns. The switches are multiplexed because only one row

will be active a time, so the MCU can detect which switches of a row are pressed. By strobing

through each row, the MCU can read out all sixteen switches one row at a time.

Suppose the user has depressed switches 6, 10 and 11. When the MCU starts a switch

read-out, it sources power onto port ROW0. Since none of the switches in the row are down,

there will be zero volts (logic-low) on each of the column ports. Next, the MCU sources power

onto ROW1. Switch SW6 is down, which allows voltage to pass COL1, but only that port will

have voltage (logic-high). As the MCU continues to strobe the output rows, it sources power

onto ROW2. This has two switches pressed, so there will be voltage at both COL1 and COL2,

so both will read logic-high. The strobe cycle will complete on the fourth row, which doesn’t

have any buttons pressed.

Electrically, the schematic shown in Figure 1.24 includes pull-down resistors on both the

row lines as well as the column lines, ensuring the ports don’t float when they aren’t con-
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Figure 1.24: Switch multiplexing using 4x4 grid.

nected. Also, because the switches are connected in this matrix, it is important that one and

only one row is sourcing current, and that the other rows are in High-Z mode to prevent them

from sinking current from a connected switch. If that were to happen, the matrix would create

a voltage divider, and its possible that the voltage at the input port would be above the VIH

threshold.

Listing 1.24 shows C code that will drive the rows, but will also debounce each switch.

It uses an array of structs that keep track of the last port value of the switch, the number of

consecutive times it has been in that state, and the current up or down status (an enumerated

value). The function get switch uses an unusual pair of for loops that increase by powers

of two. This is an efficient way of building the row and port masks for sourcing the rows and

checking the columns.

The code uses about 22 cycles to evaluate each column, and thus about 88 cycles for each

row, and about 352 cycles to check the whole matrix. If each cycle takes 0.1 µs, then this code

will require 35.2 µs to check the whole matrix. Because only one key is being scanned at a

time, if the key-press is held less than this time, it could be missed. On a ten-key calculator, a

professional data entry clerk is expected to hit 10,000 keystrokes per hour, or 2.77 keystrokes

per second. This works out to 0.361 s or 361 010 µs between strokes. The microcontroller will

be 10,000 times faster than the human typist, which is sufficient to ensure that no keystrokes
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Listing 1.24: Switch multiplexing example

2 typedef enum {
DOWN = 0, UP = 1

4 } switch_state_t;

6 typedef struct {
int last;

8 uint16_t count;
switch_state_t current;

10 } switch_t;

12 switch_t switches[16];

14 // PORTB bits 0,1,2,3 = row, PORTC bits 0,1,2,3 = col
int get_switch( )

16 {
int row, col, swnum;

18
swnum = 0;

20 // row = 1, 2, 4, 8 (16 ends loop)
for (row = 1; row < 16; row = row * 2)

22 {
TRISB = ˜row; // current row output, rest high-z (input)

24 PORTB = row; // current row = drive courrent

26 // col = 1, 2, 4, 8 (16 ends loop)
for (col = 1; col < 16; col = col * 2)

28 {
int v = PORTC & col; // small chance that PORTC could change during loop

30
// check to see if the switches match

32 if (v != switches[swnum].last)
switches[swnum].count = 0;

34 else if ( ++switches[swnum].count > DEBOUNCE_TIME) {
if (v == 1)

36 switches[swnum].current = UP;
else

38 switches[swnum].current = DOWN;
}

40 // store state of switch and move to next switch number
switches[swnum].last = v;

42 swnum++; // 0 .. 16
}

44 }

46 // all back to input
TRISB = 0xffff;

48 }
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will be missed.

Switches and Ports

The previous example uses 4 output and 4 input ports to arrive at 16 total ports. Adding one

additional output row or input column would add the capability for 4 additional switches.

As a generalization of this relationship, Equation 1.10 shows the N the number of switches, R

the number of rows, and C the number of columns.

N = R× C (1.10)

To get the number of rows and columns approximately balanced, we get:

R = b
√

(N)c (1.11)

C = dN/Re (1.12)

(1.13)

For example, suppose we wanted to build a PC keyboard with 104-keys, using Equa-

tion 1.11, to keep the the rows and columns approximately balanced, we get:

R = b
√

(104)c

≈ b10.19c

= 10

and then solving for C:

C = dN/Re

= d104/10e

= 11

Our PC keyboard will actually have capacity for N = 10 ·11 = 110 keys. Most importantly,

with this technique we would need a microcontroller with 21 I/O legs to address the rows and
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columns.

Discrete Decoder and Encoder

Another technique can reduce the number of I/O legs even further. An M:N decoder is a de-

vice that takes an M -bit binary input and drives exactly one of its N -output lines. Figure 1.25

shows an example 2 − 4 bit binary decoder [1]. The number of binary output lines is really

2M , so that a 4-bit input will drive 16-output lines.

Figure 1.25: A 2-4 line decoder

In the PC keyboard example, if we use a 4:16 decoder it no longer makes sense to balance

the rows and columns. Four MCU ports will be converted by the decoder to source voltage

on exactly 1 of 16 rows. So, with 16 rows, we need 7 columns to get 16x7 = 112 possible

switches, which is still more than our required 104. This design needs 4 + 7 = 11 ports on

the MCU to control a 104 (or even a 112) key keyboard, which is only three more ports than

we used for the 16-key keyboard! The decoder can be very useful for reducing the number of

ports required for the MCU, which can possibly reduce the size of the MCU needed for a task

(and thus reduce costs for a design) at the cost of adding the decoder, which typically costs

less than one dollar US.
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1.6 Source Code Quality

The code shown in Listing 1.7 is a faithful implementation of the combinational logic circuit,

but does it earn the elusive moniker of “good code?” Unfortunately, microcontroller source

code has a well-earned reputation for being of poor quality. There are several reasons for this.

One of them is that the nature of microcontroller programming is historically more difficult

than conventional programming; although that is changing with the fourth and fifth genera-

tion MCUs. Another reason is that many hardware engineers who may have had little interest

in programming have been repurposed as programmers. Reconfigurable devices, including

MCUs, are replacing the exotic analog circuits of years gone past, and the result is that more

and more work is being done with software than with a soldering iron.

Toyota’s Unintended Acceleration How bad can this be? The tragedy surrounding the un-

intended acceleration of some of Toyota’s cars sheds some light on the importance of code

quality. Starting as early as 2007, reports emerged of some of Toyota’s cars experiencing full-

throttle acceleration that could not be stopped with the car’s brakes. Initially blamed on loose

floor mats, Toyota recalled cars and replaced the mats. Reports continued, and eventually

there were fatalities. At one point, tin whiskers, which can form between the contacts of a

switch, were blamed for the problem. By 2010, there were 6200 complains, 89 people were

killed, and Toyota was under investigation.

The problem was linked to the software that controls the throttle, which was found to

be 1300 lines long and was so poorly structured that it had a McCabe Cyclomatic Complex-

ity score of 146 (there were 146 paths through that block of code), meaning the code was

untestable and unmaintainable.

Toyota’s code had 11,253 global variables, meaning the values could be read or written by

any part of the program, without any controls. The goal should be zero global variables. Even

worse, those global variables were expected to be modified by other parts of the program but

weren’t marked as volatile, so the readers would never changes from the writers!

MISRA-C, a set of industry standard safety rules for developing embedded systems, for-

bids using recursive functions, but Toyota did this anyway. The stack for the control sys-

tem was already 94% full, but then the code made extensive use of recursive function calls.

Eventually the stack overflowed and corrupted the embedded real-time operating system’s

memory.

Ultimately, the engineering team at Toyota made contradictory statements. Team mem-
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bers believed others to be responsible for testing, but no one was. Others were not aware of

Toyota’s own policies. As a consequence, Toyota’s public statements and statements to inves-

tigators were inconsistent and fraudulent. While we can argue about the culpability of the

developers, Toyota as a company faced billions of dollars in fines, legal settlements, and recall

fees; and 89 people were killed.

Throughout the rest of this text, there will be an emphasis on developing code that is well-

structured. In this chapter, we look at different ways of organizing the code to manage the

GPIO ports, and introduce a software metric called Fragility.

Fragility

Fragility, in software, describes the concept that poorly structured code is difficult to maintain

because a change requires touching the code in many, many places. When code is fragile

making a change is likely to require large changes to the code base, and will be likely to

introduce new bugs. Programmers are notorious for patching up the code to just make it

work, and one consequence is that fragile code tends to beget more fragile code as fixes and

patches stack up. Typically, fragility can only be fixed with a major overhaul of the code base.

One aspect of MCU programming that makes it more susceptible to being fragile is that

the interface between hardware and software may not be fully controlled by the developers.

The mapping of input signals to I/O can change throughout a product’s life cycle. In fact,

the MCU can change throughout a product’s life cycle. Because the code is tied so tightly to

the low-level hardware of a specific MCU and the external port mappings, these changes can

have major impact on the structure of the code.

Another common programming pitfall is the use of magic numbers throughout a program.

For example, PIC32’s tri-state register used 1 for input, and 0 for output, but not all GPIO

module follow that convention. To put a port into input mode, we would typically write:

TRISA = 1;. In this case, the value 1 is a magic-number. The program doesn’t work without

it, and its not clear where that came from. If we were to move this code to another MCU, we

might have to change hundreds of 1’s into 0’s to work with the different MCU. Magic numbers

are just one example of a common (but bad) programming technique leads to fragility.

We will take another look at the previous combinational logic example, shown again in

Listing 1.25. This code used the vendor provided port names and bitfield entries along with

the magic numbers to set directionality on the ports and drive the port registers. While this is

common practice, it isn’t always good practice.
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Listing 1.25: Combinational Logic Example
#include <p32xxxx.h>

2
// B0 = Run, B1 = Motor Slow, B2 = Hood Open

4 // B4 = Motor Power, B5 = Alarm
int main( )

6 {
PORTB = 0;

8
TRISBbits.TRISB0 = 1;

10 TRISBbits.TRISB1 = 1;
TRISBbits.TRISB2 = 1;

12 TRISBbits.TRISB3 = 0;
TRISBbits.TRISB4 = 0;

14

16 while(1) {
PORTBbits.RB4 = PORTBbits.RB0 & PORTBbits.RB1 & ˜PORTBbits.RB2;

18 PORTBbits.RB5 = PORTBbits.RB0 & PORTBbits.RB2;
}

20 }

Example 1.6.1. The microcontroller example shown in Listing 1.25 had the RUN switch
connected to I/O port B0. Due to a hardware change, the port is now switched to I/O port
B7. Three lines of code: 9, 17, and 18 need to be changed out of a total of 10 lines code. To
make this one change, 30% of the code had to be touched!

�

Named Constants

Listing 1.26 uses the C Pre-Processor to give named constants for the port registers. The code

is more readable because it now uses the symbols instead of the port registers. The code is

also less fragile. To change a port register, there are only two changes to make: the named

port and its associated tri-state buffer configuration. This illustrates a small problem with the

microchip libraries that is really more of an annoyance: the port names, e.g. PORTBbits.RB0

and TRISBbits.TRISB0 cannot be referenced by the same #define symbol. Because of the

tri-state buffer, changing any port register requires changing both the PORTx and TRISx reg-

isters, so this is largely unavailable.

Function Macros

Listing 1.27 moves to the next level in sophistication with the C Pre-Processor. Two func-

tional macros are defined, T and P, that expand to the tri-state and port registers suffixed

with the name of the I/O port. For example, T(B0) gets expanded by the pre-processor

to TRISBbits.TRISB0, while P(B0) will be expanded to PORTBbits.RB0. The symbolic

port names now only contain the last part of the port name e.g. B0. The advantage to this

approach is that the tri-state and port registers can be driven with the same symbolic port

name (e.g. lines 19 and 27). The disadvantage with this version of the program is that now

the function macros must be used instead of just the symbolic port names, but nothing in the
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Listing 1.26: Named values with #define
#include <p32xxxx.h>

2
#define RUN PORTBbits.RB0

4 #define MOTOR_SLOW PORTBbits.RB1;
#define HOOD_OPEN PORTBbits.RB2;

6 #define MOTOR_POWER PORTBbits.RB4;
#define MOTOR_ALARM PORTBbits.RB5;

8
int main( )

10 {
PORTB = 0;

12
TRISBbits.TRISB0 = 1;

14 TRISBbits.TRISB1 = 1;
TRISBbits.TRISB2 = 1;

16 TRISBbits.TRISB4 = 0;
TRISBbits.TRISB5 = 0;

18

20 while(1) {
MOTOR_POWER = RUN & MOTOR_SLOW & ˜HOOD_OPEN;

22 MOTOR_ALARM = RUN & HOOD_OPEN;
}

24 }

Listing 1.27: Functional defined macros to handle TRIS and PORT registers
#include <p32xxxx.h>

2
#define P(x) PORTBbits.R##x

4 #define T(x) TRISBbits.TRIS##x

6 #define RUN B0
#define MOTOR_SLOW B1;

8 #define HOOD_OPEN B2;
#define MOTOR_POWER B4;

10 #define MOTOR_ALARM B5;

12 #define IN 1
#define OUT 0

14
int main( )

16 {
PORTB = 0;

18
T(RUN) = IN;

20 T(MOTOR_SLOW) = IN;
T(HOOD_OPEN) = IN;

22 T(MOTOR_POWER) = OUT;
T(MOTOR_ALARM) = OUT;

24

26 while(1) {
P(MOTOR_POWER) = P(RUN) & P(MOTOR_SLOW) & ˜P(HOOD_OPEN);

28 P(MOTOR_ALARM) = P(RUN) & P(HOOD_OPEN);
}

30 }
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Listing 1.28: port.c - Mapping GPIO port to logical function C implementation
/* port.c - implements the input/output to the port. */

2 #include <p32xxxx.h>
#include <xc.h>

4 #include "port.h"

6 // B0 = Run, B1 = Motor Slow, B2 = Hood Open
// B4 = Motor Power, B5 = Alarm

8
int getMotorSlow()

10 {
TRISBbits.TRISB1 = 1;

12 return PORTBbits.RB1;
}

14
int getHoodOpen( )

16 {
TRISBbits.TRISB2 = 1;

18 return PORTBbits.RB2;
}

20
void setMotorPower(int state)

22 {
TRISBbits.TRISB4 = 0;

24 TRISBbits.TRISB4 = state;
}

26
void setMotorAlarm(int state)

28 {
TRISBbits.TRISB5 = 0;

30 TRISBbits.TRISB5 = state;
}

Listing 1.29: port.h - Mapping GPIO port to logical function header file
1 #ifndef PORT_H
#define PORT_H

3
int getMotorRun( void );

5 int getMotorSlow( void );
int getHoodOpen( void );

7 void setMotorPower(const int state);
void setMotorAlarm(const int state);

9
#endif

programming environment will force us to do that. One advantage is that the code is less

fragile - changing a port only requires changing the symbolic port name on one line, but is it

better?

When choosing a style, there are many things to consider. Using metrics such as fragility

can be a good guide, but ultimately, they are only guides. For example, using the named

constants approach may actually make the code more readable as it does not loose the ability

use the port names without the T and P prefixes, can easily be misused.

Seperation of Functionality

Instead of playing games with the pre-processor, we can turn to Structured Programming and

separate the functionality into different parts of the program. In this example, we split the

program into two parts - one part that maps the external GPIO ports into an internal logical

name, and the main control loop.

Listing 1.28 is its own file, port.c, that maps the external GPIO ports to a logical signal.



64 1.6. SOURCE CODE QUALITY

Listing 1.30: main.c - Main combinational logic
#include <xc.h>

2 #include "port.h" // local port implementation

4 void main( )
{

6 while(1) {
int power = getMotorRun( ) & getMotorSlow( ) & ˜getHoodOpen( );

8 setMotorPower(power);

10 int alarm = getMotorRun( ) & getHoodOpen( );
setMotorAlarm(alarm);

12 }
}

The rest of the program doen’t need to know that the motor run signal is connected to port B0,

only this file does. In fact, as far as the rest of the program is concerned, the port functionality

is opaque, no other part of the program can see the implementation of the port logic. Since

the functionality must be used by other parts of the program (the control logic), a header file,

shown in Listing 1.29, will be shared across the rest of the program.

Listing 1.30 shows the main() function implementation. Like our original example, it

includes an infinite while loop, but instead of directly modifying the port registers, this im-

plementation makes calls to the named functions in the port.c file.

The implementation is successful in maps the symbolic name (setMotorAlarm) to its

functionality, but disconnects it from its implementation. The control logic doesn’t care how

the motor alarm is set, it just needs to be set.

How fragile is this code? Suppose we have to change a port mapping like we did before.

We only need to change two lines of code, which is the minimum number of code changes

we can possibly make. That is certainly an improvement. Suppose we have to change the

combinational logic? This implementation makes that straightforward as well. So, on all of

the previous metrics, this is a good implementation.

One argument against using this type of code stems from a mistaken understanding of

how function calls are made. The C compiler contains an optimizer that improves the run-

time or space used by the Assembled program. One of the optimization steps is called auto-

inlining, where small functions are replaced by the instructions contained in the function,

without actually making a function call. So, for all of these small functions, the C compiler

won’t make a function call anyway; but the source code is still well organized.

Another advantage to the code in Listing 1.30 is the use of the local variables for the output

states. These variables will be allocated and can be inspected during a debug operation; but

during an optimized compilation, they will be optimized away. In fact, the resulting assembly

for this version will be almost identical to the hand-written assembly presented earlier in this
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chapter!
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Exercises

Exercise 1.1 (5)(§1.2) The PIC32’s output port includes an enable signal, which means it’s

output can be on or off. Why doesn’t the input buffer need a similar enable control signal?

Exercise 1.2 (5)(§1.3) Define Schmitt Trigger and explain why it is especially useful for

digital input. Note: If your answer includes the word hysteresis, define it.

Exercise 1.3 (5)(§1.3) Define flip-flop latches and explain why they are used for construct-

ing registers

Exercise 1.4 (5)(§1.3) Define metastability for flip-flops

Exercise 1.5 (5)(§1.3) Find the data-sheet or reference manual for at least two other mi-

croprocessors and find their version of the GPIO Port Diagram. Compare and contrast their

capabilities.

Exercise 1.6 (10)(§1.3) Find at least two other data-sheets from two other vendor’s micro-

controllers (e.g. Texas Instruments or AVR), and fill out the table below:

Characteristics Family: Family:

Maximum current out of VSS

Maximum current in on VDD

Maximum current on an I/O pin

Voltage on any digital only pin with respect to VSS

Voltage sourced, logic high

Voltage sourced, logic low

Current sink, input port

Exercise 1.7 (5)(§1.4)

Section 1.5 gave these two examples to change GPIO bits:

1 PORTA = 0x8001;
PORTF = PORTF | (1 << 15) | (1 << 0);
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They both do something the same, but they also have a (possibly) important difference.

Explain.

Exercise 1.8 (5)(§1.4) The GPIO port used two buffers (Figure 1.16), but only the output

was a tri-state buffer with an enable signal. Why?

Exercise 1.9 (5)(§1.4) Define high-impedance. Why is it important to ensure that MCU

digital input is high-impedance?

Exercise 1.10 (5)(§1.4) In Section 1.4.6 two different SFRs were introduced: LATx and

PORTx. If the port is in output mode (TRISx = 0), would there ever be a reason where a

read from LATx would be different than a read from PORTx? Explain your answer.

Exercise 1.11 (10)(§1.4) This question is based on the I/O port diagram in Figure 1.1. The

following table lists the control signals for the I/O port, and then lists a series of instructions.

Show the values for each of the control signals as the processor executes each instruction. For

all signals except the I/O pin, use 1 for high/true, 0 for low/false, and X for don’t care (doesn’t

matter). For the I/O pin, use HI for source voltage, 0 for sink voltage, Z for hi-impedance,

IN when reading input, ? for don’t know. For each of instruction, assume only the port that

corresponds to the least significant bit of the value being written. As an example, the values

for TRISA = 0 are filled into the table.

State

D
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a
Bu

s

R
D

PO
R

Tx

W
R
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R

Tx

R
D
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LA
Tx
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IS

x

R
D
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D

C
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O
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C
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SL
EE

P

I/
O

PI
N

TRISA = 0 0 0 0 0 0 0 0 0 0 0 ?

PORTA = 1;

PORTA = 0;

TRISA = 1;

int x = PORTA;

LATA = 1;

ODCA = 1;

LATA = 0;

Exercise 1.12 (5)(§1.4) Suppose you are working to design this microprocessor. Your task
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is to set the initial state of the processor after a power-on-reset (POR). Since you cannot make

any assumptions about what the I/O ports are connected to, we have to make sure that the

initialization state is safe - it won’t over-load input or output modules. What values would

you set in each of the latches in Figure 1.1?

Exercise 1.13 (5)(§1.4) Write the instructions, in the right order, to take the port from its

default power-on state (see previous exercise) to driving a logic high on the I/O pin.

Exercise 1.14 (5)(§1.4) Recall from Figure 1.1 that the input value goes through a pair

of flip-flops that are trigged by SYSCLK. Suppose SYSCLK is running at 40 MHz. What is the

maximum latency for an input value to be available on the data bus? With the linked flip-flops,

is it possible that the microcontroller could see a change every clock cycle?

Exercise 1.15 (10)(§1.5) Suppose a PIC32 MCU has a SYSCLK at 20 MHz. Experimental

data shows that longest observed time for a given switch to settle is 220 µs. Using either

the disassembled MIPS implementation of the code in Listing 1.22, or write your own As-

sembly routine (provide the code either way) and determine what the minimum value for

DEBOUNCE TIME to ensure sufficient time for the switch to settle.
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