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MOTIVATION AND BACKGROUND 

Fault detection and analysis is an important problem domain.  Many 

computational models exist to successfully address the general needs of this 

problem domain.  Most of these traditional approaches rely on heuristic 

information provided by experts.  Typically, these systems are designed with the 

assumption that the heuristic provided by the expert is correct, and information 

presented by the problem environment will be consistent.  [3],[10], [11].   

Common deficiencies in these systems include reconfigureability and uncertainty.  

Uncertainty refers to the potential for incorrect or incomplete information being 

presented by the environment.  Dropped messages or conflicting fault symptoms 

provide challenges to many traditional fault detection systems.  Reconfigureability 

describes the need for fault detection systems to be readily reconfigured as the 

environment in which they operate changes.  Reconfiguration events happen in 

the physical configuration of the monitored devices change.  These events also 

happen as a result of incompatibilities developing between different devices.  [10], 

[11] 

Public Telephone Network 

The public telephone network (PTN) is a problem domain that presents these 

challenges to fault detection systems.  The PTN is huge collection of 

interconnected devices over heterogeneous transmission media.  Reconfiguration 

events happen frequently throughout the network as devices added or removed 

and connection paths are opened or closed. Inconsistent information about the 

state of the network is common as a result of the huge number of devices with 

potential interoperable incompatibilities. [10],[11].  

 1



This project considered fault detection in a small subset of the PTN domain.  

Unidirectional OC-3 rings are one of the basic building blocks of the PTN.  The 

rings are synchronized by a single clock, and can re-route communications if a 

fault is detected within 50ms without dropping a call.  This creates one additional 

constraint on a fault detection system in this problem domain.  The analyzer must 

be able to detect, plan, and respond to a fault within 50ms to avoid dropping 

calls.  

The PTN is also a dynamic environment.  Service engineers frequently make 

changes to the physical network.  Device configurations change automatically as a 

result of fault detection protocols in their firmware.  Fault detection systems must 

be able to reconfigure themselves as a result of these reconfiguration events.  

Because the domain is fluid, the time requirements of reconfiguration must be 

minimized. 

Finally, the PTN presents a unique challenge as a result of its composition.  The 

devices that are physically connected to the network may be of different vendors, 

models, configuration, software revision, and age.  Proper diagnosis will require a 

sophisticated learning and probability model to identify factors that are the root 

cause of a problem.  For example, if two revisions of firmware are incompatible, 

the symptom may appear to be a physical problem.  In this example, the fault 

analysis system must be able to learn that firmware is not compatible and is the 

true cause of the failure.  

Bayesian Belief Network 

Bayesian Belief Networks are used in many fault detection systems in other 

problem domains.  In , Heckerman describes a system of fault analysis using 

relatively simple BBN’s in the small problem domains such as printer fault 

diagnosis.  

[3]

 2



Bayesian Belief Networks are based on probabilistic reasoning .  BBNs are often 

built to reason under uncertainty.  However, reconfiguration and computational 

run-times are two significant challenges to the traditional BBN model. 

BBNs are extremely computationally expensive, and require significant run-times.  

Ignoring the reconfiguration requirements, simply propagating belief through the 

network is NP-Hard .  As the size of the BBN grows, the time required to 

propagate information through the network increases exponentially. 

[2]

Multiply Sectioned Bayesian Belief Networks 

Dr. Yang Xiang [12] demonstrated that large BBNs tend to exhibit a locality 

property.  That is, that evidence entered into the network tends to ripple to nodes 

in a given locale, determined by the configuration of the network.  Small changes 

in the state of the network tend to not ripple throughout the entire network. 

Xiang uses this locality property of large BBNs to create Multiply Sectioned 

Bayesian Networks (MSBN) that are composed of one or more sections.  Each 

section of the MSBN contains those nodes that are “local” to each other with 

respect to their inference propagation.   

In previous research done at Shippensburg University, by Janet Pitkin , a 

protocol was developed to construct sound sections from a set of individual 

BBNs with a set of overlapping nodes.  At the completion of this algorithm, each 

of the original sub-networks contains the nodes that participate in a clique that 

crosses a network boundary.  This meets the criteria from  for a “sound 

sectioning.”  By ensuring a sound sectioning, evidence can propagate through the 

network in a statistically sound manner.   

[5]

[12]

These algorithms rely on “cliques” of nodes.  A clique is a maximal totally 

connected subgraph, where the clique contains all, and only, those nodes which 
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are directly connected to all other nodes in the clique.  Cliques’ role in these 

algorithm are to identify those subgraphs that are semantically related.  Evidence 

entered into a node and the corresponding alteration of its probability is likely to 

have a resultant alteration of the probability of the other nodes in the clique. 

Propagating information through the MSBN is expected to be more efficient 

than a comparable “un-sectioned” network.  When new evidence is entered into a 

traditional network, the effects of that update must be propagated to all other 

nodes in the network and the results must propagate back to the original node.   

This process is similar for each section of the MSBN.  In the best case, evidence 

entered into one section propagates to nodes in the same local section [see locality 

property pp. 30].  In the case that new evidence must be propagated through other 

sections, the MSBN method will limit the propagation to only those sections that 

need to be updated based on the locality of subsequent localized changes.  In the 

degenerate case, belief entered into one node must be propagated throughout the 

entire network, resulting in slightly worse performance than if the network were 

not sectioned at all.  The degradation results from evaluating the over lapping 

nodes to determine whether to propagate changes or not. 

The degree of speed-up achieved from this method will be relative to the 

structure of the network. The ratio of boundary nodes (those nodes that 

interconnect sections) to non-boundary nodes will be of utmost importance. The 

lower the ratio (i.e. relatively low number of boundary nodes to a high number of 

non-boundary nodes) will yield higher speed-ups.  This derives from the 

propagation algorithm that must evaluate the status of every boundary node 

whenever new evidence is entered into the network.  The more boundary nodes 

there are, the more time is required in comparing their states. 

 4



For the Public Telephone Network (PTN) problem, the locality property is 

expected to create a large number of relatively small sections of networks with a 

high degree of locality.  This expectation is derived from the physical structure of 

the PTN network.  Telephones are connected to local switches, local switches are 

connected to regional switches, which are in turn connected to larger back bone 

connections.  Intuitively, it is obvious that a failure of one telephone is not likely 

to be caused by a failure of the national communications backbone.  The cause of 

a single phone’s failure is likely to be localized to that telephone and the wires and 

devices that connect it to the local or regional switches. 

The PTN is designed to have a high degree of localization and fault isolation.  As 

an example of the extreme opposite, consider the shared bus Ethernets that were 

prevalent in the 1980’s.  One defective network card could consume all available 

bandwidth on the shared media, and create a distributed failure that was not 

localized to its connection to the network.  Certainly, the PTN does not fall into 

this category, as a failure of a single homeowner’s telephone is not likely to cause 

the entire global telecommunications infrastructure to crash. The MSBN 

approach is thus an appropriate candidate for the PTN problem domain.  

Failures detected by the network are expected to exhibit highly localized behavior 

[10], [11]. 

Scope of this Project 

The scope of this project is to implement an MSBN management package.  The 

package will be implemented over a commercial Bayesian Belief Network. The 

goal of this package is to demonstrate the feasibility of implementing MSBNs, 

and to allow further research into the applicability of MSBNs to the PTN fault-

detection environment. 
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IMPLEMENTATION 

Implementation of the MSBN manager involved developing an API that 

extended a commercial belief network package.  The extensions provide 

specialized functionality for managing multiple MSBNs, and many sections within 

each MSBN.  There are two primary functions the API provides. First, the API 

provides the mechanisms to create sound sections of an MSBN from one or 

more BBNs.  Second, the API provides the mechanism to manage the 

propagation of evidence throughout the sound sections of the network.  

Java was chosen as the development language.  Java offers rapid prototyping, 

developing, and documenting.  It is a portable language and can be moved from 

platform to platform, and potentially embedded in hardware devices.  

Furthermore, Java’s implementation of inheritance and polymorphism allowed 

development of very elaborate data structures without the overhead of 

instantiating generic template classes as is commonly done in C++.   

Java’s advanced memory management also makes it an ideal choice.  Memory is 

allocated and freed automatically by the environment.  Buffer overflows are 

reduced, as Java nearly prevents access to specific pointers and accidental 

clobbering of data structures.  Objects are finalized when they are no longer 

referenced, and the memory is reclaimed by Java’s garbage collector.  This is a 

tremendous improvement over traditional languages such as C or C++.  This 

increases program stability and reduces debugging time during development by 

removing the most common developmental bugs. 

Additionally, the future needs of the project were considered.  Java’s 

interoperability with other systems, databases, and object brokers is well known.   
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This suggests that Java will be an ideal language for continued development of 

the project in the future, allowing it to scale up to larger systems and interoperate 

with advanced database systems. 

Runtime is a common concern using Java.  Java’s runtime environment is built on 

the byte-code interpreter, unlike other complied languages that are executed 

directly by the system’s processor.  Java programs typically do run slower in a 

side-by-side comparison with other “traditional” languages.  Some of the slower 

performance of Java is offset by the expressibility of the language.  The advanced 

data structures that are provided by the language often lead to more elegant 

solutions that carry more efficient runtimes.  Traditional languages often lack 

these structures, and programmers tend to shy away from developing them, 

instead favoring more complex or slower algorithms.  Finally, the bulk of the run-

time occurs in the Netica libraries, which are ultimately written in C language, and 

executed as platform “native” code .  This mitigates some of the performance 

degradation caused by Java. 

[8]

Norsys Netica Application Programmer Interface 

Norsys’ Netica application interface was chosen to manage the Bayesian Belief 

networks.  Netica’s development environment consists of libraries for a number 

of target platforms, and a graphical user interface for Windows and Macintosh, 

and a set of object wrappers, Netica-J, for Java , [8].  Netica-J was released to 

Shippensburg University pre-release 2.09, an alpha version, in October 2001 [9]. 

Subsequently, Netica-J was officially released January 2002 [6].  The final release 

contained improvements that yield incompatibilities with applications written 

using the pre-release, including the MSBN manager. 

[7]

Netica’s graphical user interface will allow experts to construct networks manually 

or to view the networks created by the software application.  The Netica API 
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contains statements that allow belief network construction, and reconfiguration.  

The API also includes statements that facilitate entering findings into the network 

and querying the network for results. 

Two drawbacks to using the Netica API became apparent as the project 

progressed.  First, Netica is a commercial package[7], and secondly, the MSBN 

manager must shadow Netica’s internal network construction.  

Netica is a commercial package, and deployment of a production program would 

require a license to use Netica.  This is not a significant drawback, since the 

current licensing terms are generally reasonable, and special discounts can often 

be negotiated depending on circumstances. 

Shadowing the Netica structures was also easily overcome.  Shadowing refers to 

the technique of augmenting a lower-level API and having to replicate the 

services provided by that API.  Problems arose from Netica’s requirement that 

Node objects are tied to Net objects; and from the specification of directed 

links.  Many of the algorithms used by the MSBN manager assume a existential 

property for nodes, and freely copy nodes between networks, eg. The Reduction 

by Peeling Algorithm .  Netica instantiates nodes within a specific network and 

the API does not provide methods to treat a given node universally, such as 

equality tests .   Also, Netica is designed to use Directed Acyclic Graphs 

(DAGs), and there are no provisions to support the Hypergraph model, nor the 

moral links used in various algorithms (  and ). The MSBN provides these 

functions through the shadowed API which can exchange the names of the 

nodes between networks and maintain the special adjacency structures.   

[1]

[1]

[7]

Overall, Netica proved to be a stable platform that provided excellent 

development tools and documentation.  Development time was reduced as a 
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result of using the product.  Consistent Belief Networks were created using both 

the GUI tool and through the Netica API. Resulting networks were stored as files 

and reviewed using the GUI tool.  Finally, being able to interchange networks 

between the API and the GUI made it convenient to double check the 

probabilities generated by the networks. 

The MSBN Package 

The MSBN package was written in Java, using the Standard Development Kit 

v1.3, under the Forte for Java editor.  The package was developed to use Netica-J, 

which currently is available only for the Windows operating system.  The MSBN 

package performs several tasks: 

• Instantiate linkages between networks 

• Import Netica sub-networks into the MSBN manager 

• Construct an MSBN from the Netica sub-nets 

• Apply Pitkin’s algorithm to identify overlapping cliques 

• Copy nodes between sub-nets to fulfill Xiang’s “sound-sectioning” 

principle 

• Return modified sub-nets to original application 

• Manage inference propagation between the individual sub-nets 

The MSBN manager was designed to be instantiated separately from the Netica 

libraries.  A program can call upon the manager’s functions on an “as-needed” 

basis.  All other times, the program can interact directly with the Netica API. 
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Instantiate links between networks 

The MSBN manager provides the ADT netLinks to manage the storage of 

network links.  The class stores the name of a node that is shared between two 

networks, the names of the networks sharing the node, and the maximum 

amount of difference that can exist between the states of the nodes in each of 

their networks.  The MSBN manager stores a linked list of these netLinks.  As 

the structure of the network is reconfigured and nodes are copied between sub-

nets, the list of links must be updated with the new links between networks. 

This method of representing the links between networks is one way in which this 

could have been accomplished.  The way that was not chosen was to establish the 

node and network of each end of a directed link between networks.  In this 

model, instead of sharing the node, the networks would share a link between 

nodes.  This method makes it more difficult to represent the probability tables 

between the networks (since the nodes would not share each other’s inputs).  It 

would also be more difficult to copy the nodes around between sub-nets as a 

result of other operations of the manager. 

Import Netica sub-networks into the MSBN manager 

Individual Netica sub-networks must be imported into the MSBN manager.  

There may be many MSBN managers, and many sub-networks co-existing in an 

application’s space.  Therefore, no assumptions may be made about the networks 

that are involved in a given MSBN.   

Using the Netica network as the model for the MSBN sub-network allows 

network libraries to be created and stored on disk.  These libraries can be created 

by an expert, or through pasts run of the MSBN manager.  Networks can be read 

and written using the Netica input and output library routines.  They can also be 
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created at run-time using the Netica API.  However the Netica network is 

created, it can be treated the same by the MSBN manager.   

The MSBN manager internally records the Netica networks that are imported.  

The manager compiles auxiliary data structures about each network to make 

retrieval of that networks’ information faster or to represent information that is 

not present in the original Netica networks.  For example, if a moral link is added 

between two nodes, that link cannot be represented in Netica, but it is added to 

the adjacency list that is stored in the manager. 

Construct an MSBN from the Netica sub-nets 

An MSBN is created from the imported sub-nets.  The MSBN is created as a 

Netica network that contains all of the nodes and linkages of the sub-networks.  

This intermediate network is necessary to support later operations on the entire 

network.  This intermediate network can potentially be quite large and require 

significant memory for storage.  Therefore, it is only used temporarily, and 

discarded after the reconfiguration operations are complete.  Limitations on the 

size of this intermediate representation are solely from the Netica API. 

Apply Pitkin’s algorithm to identify overlapping cliques 

In , Janet Pitkin describes the steps necessary to construct an MSBN from a 

series of sub-networks (sub-DAGs).  These steps essentially ensure that the 

MSBN forms a sound network from the sub-networks. The algorithm uses 

techniques such as Triangulation, Moralization, Cycle-Detection, and Junction 

Forest Creation.  

[5]

The Triangulation algorithm used by this method is the standard algorithm 

described in many textbooks and websites.  Essentially, cycles of length > 3 are 

found, and links are added between nodes to ensure that no cycle is of length > 

3. 
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The Moralization algorithm searches the network for each node.  For each node, 

its parents are retrieved, and using the auxiliary structures created when the 

network is imported, the “owning” network; or network that contributed the 

node, is retrieved to determine whether the parents of a node come from 

different networks.  If they do, a “Moral Link” is added between those nodes.  

This link is added only to the auxiliary structures in the MSBN manager. One 

change to Pitkin’s algorithm is that if only the parents are connected between 

networks, orphaned nodes will result.  Therefore, any cliques involving the 

parents to be copied must also be copied between networks. 

The Cycle Detection algorithm uses a common depth-first three color paint 

algorithm.  First, all of the nodes of the MSBN are “painted” white.  Then, as 

each node is visited, it is “painted” gray.  If any child of a node is not white, then 

a cycle has been found.  Each child is recursively visited.  Finally, when all 

children are visited, the node is “painted” black, and the function returns up a 

level.   When cycles are discovered, their paths are added to a linked list for later 

processing. 

Finally, Junction Forests are created using Almond’s “Reduce by Peeling”  

algorithm.  The resulting tree of cliques is used to determine nodes missing from 

the D-Sepset. That list of nodes is then used to identify nodes that must be 

exchanged between networks to fulfill this requirement. 

[1]

Copy nodes between sub-nets to fulfill Xiang’s “sound-sectioning” principle 

The nodes identified by the prior processes are copied between sub-networks.  

The nodes that are identified essentially comprise the linkage hosts that ensure 

sound-sectioning between sub-nets.  After completion of this, sub-networks may 

be evaluated independently of each other.   
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Manage inference propagation between the individual sub-nets 

As evidence is entered into the individual sub-networks, localized changes in the 

state of the network are expected to remain local to that network.  However, 

some changes will not be localized, and must be propagated through the entire 

network.  A propagation manager was developed to provide this functionality. 

The propagation manager is initialized with the individual networks that were 

adjusted through the previous algorithms; and the resulting network links.  As 

evidence is entered into the network, the user’s application can trigger a 

propagation request. 

Propagation begins by iterating through the list of network links, and comparing 

each state of the nodes in each of their component networks.  If the difference of 

any one state of either node differs more than the acceptable limit, the findings 

are propagated through the network. The propagation manager will recursively 

propagate changes throughout the network until all nodes have settled into new 

states.    
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RESULTS 

The MSBN Manager was implemented and several test suites were created.  The 

first set of tests demonstrated its accuracy in creating networks.  The second set 

of tests demonstrated the performance characteristics.  The results of these tests 

are presented.  A summary of the conclusions reached from these results is 

presented after.   

Sound Sectioning 

One important goal of the MSBN Manager is to ensure sound sectioning 

according to Xiang’s rules.  Consider the following sub-networks: 

D1 D

A B

A D2 B
D3

C C
E 

F

 

Figure 1 – First test network 

Each of the three sub-nets (sub-DAGs) above need to be compiled to share the 

overlapping cliques.  The shared nodes are: A, B, and C. In this case, there are 

cliques formed by {ADB}, {AEC}, and {CFB}.  Each of these linkage cliques 

need to be copied into the other networks.  Upon completion of Pitkin’s 
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algorithm, each of the sub-DAGs contains all of the nodes of the other networks 

and the network linkages now contain references to each of the copied nodes. 

D1 D

A B

G A 
B

D3H E 
C 

C
D2 I F

Figure 2 – Second test network 

In the second test network, several children were added to node E.  In this case, 

the same copying occurred with the nodes A, B, C, D, E, and F.  The children of 

E were not part of any linkage cliques with any other nodes in other networks, so 

they remain only in network D2. 

G 
E A

H D
D C

B
F 

D2

D1 Node D is a sep-
node between D1 
and D2 

Figure 3 – Third test network 
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In the third test network, two networks were joined on what would be a sep-node 

in the unsectioned BBN.  The join algorithm resulted in no nodes being copied, 

since the node was already a valid sep-node. 

Performance 

Performance for entering inference and propagating probabilities between sound 

sections of the networks is an important result given the time constraints 

described earlier.  Several different models were created to determine the 

performance of the MSBN manager.  Software was developed to create networks 

that were “whole” and a series of networks that were sectioned.  Additional 

software was created to join the sections into an MSBN, and evaluate the run-

times.   

The methodology used to construct these tests was similar.  Two driver programs 

were written.  In each, a Netica environment was initialized, and networks were 

loaded into memory, and compiled [7].  In the case of sub-networks, the 

networks were passed through Pitkin’s algorithm(see Apply Pitkin’s algorithm to 

identify overlapping cliques 

 on pp. 11, and the resulting sound-sections were used in the performance tests.  

After initialization, an outer loop was used to run the test m number of times. 

Each iteration of this  loop served to provide an “average” of run time. Every 

iteration of the outer loop retrieved a timestamp, in milliseconds, from the 

system’s clock, and then entered into an inner loop.  The inner loop ran for n 

times.  Each iteration entered a finding into a set node, retrieved the belief of 

another node, and retracted all findings from the network.  Another time stamp 

was read at the completion of the loops, and the difference was reported. 
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Three different network configurations were used to do performance testing: a 

Simple Overlapping 3-DAG Network, a Simple Fault Analysis Network, and a Deep 

NAND-Binary Tree. 

Simple Overlapping 3-DAG Network 

The network described in figure one, consisting of nodes A, B, C, D, E, and F 

was combined into a single network.  The resulting network was run through a 

series of performance tests that entered new findings into the network and 

evaluated the state of a particular node after the probabilities where updated. 

In this example, all of the nodes were copied into each of the sub-DAGs.  The 

linkage list included all of the nodes of the networks.  There was a very high cost 

to evaluate the linkage boundaries between the networks in comparison to 

evaluating the overall network.   

This configuration demonstrates a network configuration that yields no 

localization of probability propagation.  Because there is no localization in this 

model, it represents a base-line for comparison between other models. 
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Figure 4 - Runtime Comparison 

On average, it took 0.4 ms to enter findings, propagate beliefs, and retrieve results 

from this simple 6 node network.  When the MSBN version was used, 

propagation had to occur 3 times, and required a little more than 3 times the 

computation time.  The poor performance is attributable to the lack of 

localization in this trivial model. 

Simple Fault Analysis Network 

A simple fault analysis model was constructed to demonstrate a network with 

more localized changes.  This network, depicted in 

, represents a trivial fault diagnostic network for a computer system.  

Three “interesting” nodes are: Tones, System, and SystemReady.   

Figure 5 - Computer diagnosis 

network

Tones represent the “beep codes” used by most computer BIOS chips to 

indicate problems on the system board.  One beep indicates the system is 

functioning, other “beep codes” indicate a failure. 
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System represents the state of the hardware, true for OK, false for failure. In 

this network, the node “System” was shared between two sub-nets.  This was the 

only node shared between sub-nets.  In this case, this node is a sep-node, and no 

other nodes had to be copied between networks. 

SystemReady indicates the combined state of the Hardware, Monitor, Disk, 

and Operating System.  This node was the node that was tested in the 

performance study.  As belief about certain conditions in the system was entered, 

this node’s findings changed accordingly. 

Following is a pictorial representation of the Network used in testing.  The 

subnets would be divided through the System node.  Nodes used in the 

performance testing were rendered showing the state of the conditional 

probability tables.  The remaining nodes are the same type of nodes, but  have 

been rendered to save space. 

PowerSupply
HasPower

IsTurnedOn

ChipsetOK

CPUMotherBoardOK

BiosOK

MemoryOK

System
True
False

7.03
93.0

Tones
Beep0
Beep1
Beep2
Beep3

25.0
25.0
25.0
25.0

HardwareOK

Video

Disk

OperatingSysOK

SystemReady
True
False

5.46
94.5

 

Figure 5 - Computer diagnosis network 
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Identical performance testing methodology was used to benchmark the 

performance of this network, both as a complete network and as an MSBN.   

Results of performance testing of this network produced nearly identical results 

for both utilities.  There was no definable performance loss or gain by using 

either the MSBN Manager or not for this model.  Analyzing the results shows 

that even subtle changes in the belief of the “Tones” node creates large changes 

in the belief “System”, which must then be propagated through to the other 

network.  This network demonstrates another type of localization problem.  That 

is, when the probabilities of the sep-node are highly dependent on either of the 

models that that node separates.   

This test also establishes that the average run-time of the MSBN manager will not 

be significantly worse than not using it under the following conditions: 1) when 

the number of nodes on either side of the separator nodes is proportionately 

higher than the number of nodes that make up the boundary between the 

networks, and 2) the run-time is proportionate to the amount of time required to 

evaluate the two networks plus the time to compare the Cartesian product of the 

number of separator nodes and their parent states. 

Deep NAND-Binary Tree 

This model took the shape of a binary tree.  Parents and children alternate 

probability, as a series of NAND gates.  Following is a sample network that was 

used, of height 3. 
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Left
True
False

   0
 100

LeftR
True
False

 100
   0

LeftL
True
False

 100
   0

Right
True
False

   0
 100

RightR
True
False

 100
   0

RightL
True
False

 100
   0

Root
True
False

 100
   0

 

 This network was ideal for generating a large number of nodes separated by a 

proportionately small number of sep-nodes.  In this example, the root node was 

treated as the one and only sep-node.  Thus, for each run, there was a left section 

and a right section of the MSBN. 

The network was constructed with the number of nodes ranging from 23 (8) 

through 210 (1024). Performance data is presented below: 
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Table 1 – Collected performance statistics 

2^10 Nodes in tree    
(1024)    

Size Run Time Time Average Average 
Count count Ms Ms Full MSBN 

      
100 1 3235 291 32.35 2.91 
100 2 3114 290 31.14 2.9 
100 3 3165 270 31.65 2.7 
100 4 4065 281 40.65 2.81 
100 5 3185 280 31.85 2.8 
100 6 3135 301 31.35 3.01 
100 7 3174 280 31.74 2.8 
100 8 3245 260 32.45 2.6 
100 9 2954 291 29.54 2.91 
100 10 2884 260 28.84 2.6 

  3215.6 280.4 32.156 2.804 
 

Performance between the two different implementations was surprising.  The 

complete network required 32ms for each evaluation with 210 nodes, while the 

MSBN Managed network required only 2.8ms for each evaluation.  The speed-up 

of this process was 11.42 times. 

Following are two graphs of the average time required to perform an enter-

finding, update belief, and retrieve belief of another node cycle.  In 

, the performance difference appears as the 

number of nodes in the network increases.  At the worse case, the MSBN 

performance becomes asymptotic with the performance of the complete 

network.    

Figure 6 - 

Complete vs. MSBN performance
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Figure 6 - Complete vs. MSBN performance 
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Figure 7 - Logarithmic graph of performance 

Figure 7 - Logarithmic graph of performanceIn , the graph plots the two curves 

on a logarithmic plot. Notice that the time required to evaluate the full network is 

log-linear with the number of nodes in the graph.  The time required to evaluate 

the MSBN managed graph is log-linear until the graph reaches 64 nodes, and 

then the graph flattens out.  Presumably, the linear cost of evaluating the sep-

nodes begins to out-weigh the gains of not having to propagate the probabilities 

each time. 

Sample Code 

Following is sample code that instantiates networks, processes them for sound 

sectioning, and begins to enter probabilities that may propagate between the 

nodes of the network. 
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e 

/* 
 *NeticaTestFour.java 
 * 
 * Created on November 10, 2001, 12:14 AM 
 */ 
 
/** 
 * 
 * @author  Tom Briggs 
 * @version  
 */ 
 
import MSBN.*; 
import norsys.netica.*; 
 
import java.util.*; 
 
public class NeticaTestFive { 
 
    /** Creates new NeticaTestFour */ 
    public NeticaTestFive() { 
    } 
 
    /** 
    * @param args the command line arguments 
    */ 
     
    public static void main (String args[]) { 
        LinkedList linkages = new LinkedList( ); 
         try { 
            Environ e = new Environ(""); 
 
            Streamer S1 = new Streamer("d:\\rd1.dne"); 
            Streamer S2 = new Streamer("d:\\rd2.dne"); 
            Streamer S3 = new Streamer("d:\\rd3.dne"); 
             
            norsys.netica.Net D1 = norsys.netica.Net.read(S1, true); 
            norsys.netica.Net D2 = norsys.netica.Net.read(S2, true); 
            norsys.netica.Net D3 = norsys.netica.Net.read(S3, true); 
 
            linkages.add( new netLinks( "D1", "D2", "A",0.2)); 
            linkages.add( new netLinks( "D2", "D3", "C",0.2)); 
            linkages.add( new netLinks( "D1", "D3", "B",0.2)); 
             
            MSBNMgr M = new MSBNMgr( "msbn4"); 
             
            M.importNetwork(D1); 
            M.importNetwork(D2); 
            M.importNetwork(D3); 
             
            M.importLinkages( linkages ); 
            M.processIsolatedDAGs( ); 
             
 
            linkages = M.getLinkages( ); 
             
            D1.compile( ); 
            D2.compile( ); 
            D3.compile( ); 
             
            PropagationWorker p = new PropagationWorker(  ); 
            p.addNetwork(D1); 
            p.addNetwork(D2); 
            p.addNetwork(D3); 
            p.setInterNetLinks(linkages); 
             
            norsys.netica.Node D1A = D1.getNodeNamed("A"); 
            p.enterFinding(D1, D1A,"FALSE"); 
            p.updateMSBN( ); 
 
            norsys.netica.Node D2Z = D2.getNodeNamed("Z"); 
            System.out.println("Z: " + D2Z.getBelief("False")); 
             
            System.out.println("Finished"); 
             
         } 
         catch (norsys.netica.NeticaException e) 
         { 
            e.printStackTrace( ); 
         } 
             
    } 
 
} 
Figure 8 - Example MSBN Java Cod
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The code in F  reads three Netica sub-nets 

from the disk, loads them into the MSBN manager.  The statement 

“processIsolatedDAGs” begins Pitkin’s algorithm.  This causes the side effects of 

the sub-networks being modified to be sound sections with each other.  The 

linkages that were added are retrieved from the MSBN manager.  The set of 

objects are then passed to the propagation manager that intercepts Netica’s 

“EnterFindings” routines to manage the propagation of values. 

igure 8 - Example MSBN Java Code
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CONCLUSIONS 

The scope of the project was to demonstrate that an MSBN management 

package could be created that would meet the demands of a fault analysis system.  

Specifically, the model would be required to be able to update the probabilities of 

large networks in 50ms or less. 

A management package was developed using the Java programming language and 

the Netica-J package.  The MSBN Manager accepted as input one or more Netica 

networks and the linkages between them.  The networks were reconfigured to 

support a sound-sectioning to ensure that probabilities propagated through the 

sections in the same manner as it would if the networks were not segmented. 

This implementation did address some of the time constraints.  In particular, the 

amount of time required to process new findings was proportionate to the nodes 

in the networks and the number of nodes that separated them.  The processing 

time was also proven to be relative to the configuration of the network and the 

amount of localization within the networks. 

New networks could be added to the MSBN Manager, but there were no 

provisions to handle network deletion.  Additional research must be conducted to 

determine a sound method for removing duplicate nodes from sub-networks and 

the linkage lists while maintaining sound sectioning of the network. 

Another area where there needs to be additional research is involved in adding 

new networks to an existing MSBN.  Currently, the entire pool of networks must 

be re-evaluated.  This will add considerable time to the overall reconfiguration 

times.  One suggestion is to identify those nodes, and the networks that contain 

them, that form the cliques of the joined networks, and only look at those 
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networks during a reconfiguration.  The goal of this operation is to make 

reconfiguration a localized event to reduce the reconfiguration time. 

Finally, one other area of additional research needs to be conducted into merging 

the probability tables of nodes that are copied between networks.  For example, 

consider the following two sub-nets: 

A

B

  And
A D

C

. 

Node B would be copied into the second DAG, and C and D would be copied 

into the first DAG.  The resulting node would appear as: 

A

B C

D
 

Node A’s conditioned probability table would need to be merged to include the 

three parents of A.  This is currently not being done effectively.   

Overall, the project was successful at meeting its stated goals.  Although this 

project did not create an environment suitable for diagnosing faults, it did 

demonstrate that, as a concept, the process has merit.  Further, it identified other 

issues that must be considered for future work.   
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